首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of Ni content on microstructure, hardness, and wear resistance was studied for the Cr13Ni5Si2-base intermetallic alloys toughened by Ni-base solid solution (γ). Volume fraction and microhardness of the Cr13Ni5Si2 primary dendrite as well as the average hardness of the Cr13Ni5Si2/γ alloy decrease with the increasing Ni content. The Cr13Ni5Si2/γ alloys have excellent wear resistance under dry sliding wear test conditions, which increases under high contact load wear conditions and decreases under low contact load wear test conditions with the increasing Ni content. The high wear resistance is due to the combination of high toughness of γ and high hardness of Cr13Ni5Si2 and formation of a transferred cover layer on the worn surface during wear process. The wear rate of the Cr13Ni5Si2/γ alloy is governed by the slow process of microspalling or pullout of the cracked Cr13Ni5Si2 primary dendrites. The Cr13Ni5Si2/γ alloys have extremely low load sensitivity of wear and the load-sensitivity coefficient of wear decreases drastically as the Ni content increases.  相似文献   

2.
An interesting process in terms of resource conservation is the arc surfacing of worn components by means of powder wire in which the filler contains tungsten oxide WO3 and a reducing agent (carbon and silicon). Thermodynamic assessment of the probability of 21 reactions in standard conditions is based on tabular data for the reagents in the range 1500–3500 K. This range includes the temperatures at the periphery of the arc and in the upper layers of the surfacing bath. The reactions assessed include direct reduction of WO3 by carbon and silicon, indirect reduction of WO3 by carbon, and reaction of tungsten compounds with carbon and silicon to form tungsten carbides and silicides. The possible reaction products considered are W, WC, W2C, WSi2, W5Si3, CO, CO2, SiO, and SiO2. The reduction of the oxide is written for 1 mole of O2, while the reactions of tungsten compounds with carbon and silicon compounds are written for 2/3 mole of tungsten W. The probability of the reactions is estimated in terms of the standard Gibbs energy. In the range 1500–3500 K, the standard states of the reagents are assumed to be as follows: W(so); WO3(so, li), with phase transition at 1745 K; WC(so); W2C(so); C(so); CO(g); CO2(g); WSi2(so, li), with phase transition at 2433 K; W5Si3(so, li), with phase transition at 2623 K; Si(so,li), with phase transition at 1690 K; SiO(g) and SiO2(so, li), with phase transition at 1996 K. To assess the influence of the possible evaporation of tungsten oxide WO3 in the arc (Tb = 1943 K) on the thermodynamic properties, the thermodynamic characteristics of two reactions are considered; the standard state in this temperature range is assumed to be WO3(g). Thermodynamic analysis of the reduction of tungsten oxide WO3 shows that the temperature of the melt and the composition of the powder wire may affect the composition and properties of the layer applied. At high melt temperatures (>2500 K), the formation of tungsten and also tungsten carbides and silicides is likely. These reactions significantly change the composition of the gas phase, but not that of the slag phase in the surfacing bath. Below 1500 K, the most likely processes are the formation of tungsten silicides and tungsten on account of the reduction of WO3 by silicon. In that case, the slag phase becomes more acidic on account of the silicon dioxide SiO2 formed. However, this temperature range is below the melting point of WO3 (1745 K). In the range 1500–2500, numerous competing reduction processes result in the formation of tungsten and also tungsten carbides and silicides in the melt. The reaction of tungsten compounds with carbon and silicon to form carbides and silicides is less likely than reduction processes. Evaporation of tungsten oxide WO3 in the arc increases the thermodynamic probability of reduction; this effect is greatest at low temperatures.  相似文献   

3.
Conclusions The authors investigated the temperature dependence of the specific electric resistance of the silicides V3Si, V5Si3, VSi2, Fe3Si, FeSi, MnSi, MnSi2, Mn5Si2, Co3Si, CoSi2, Ni3Si, Ni2Si, Re3Si, and ReSi and the absolute differential thermal-emf of the silicides V3Si, VgSis, VSi2, MnSi, Mn5Si3, MnSi2.Fe3Si, FeSi, FeSi2, Co3Si, CoSi, Ni3Si, Ni2Si, ZnSi2, and TaSi2 in the range from room temperature to 1000° (electric resistance) and 500° (thermal-emf). The silicides were obtained by direct synthesis from components; the samples for measurement, by sintering by means of the hot pressing method.The temperature dependence of the electric resistance of the suicides MnSi2 and ReSi is typical of semiconductors. The silicides Fe3Si and Co3Si may be relegated to the class of ferromagnetic semimetals. A metallic character of dependence of the resistance on the temperature was found for the other investigated suicides. The shape of the temperature vs electric resistance curves indicates the complex multiband nature of the energetic spectrum of electrons in silicides.With the increase in the relative silicon content in silicides within the given metal-silicon system, there is an increase in the absolute value of the thermal-emf, and the nature of the temperature dependence becomes more complex.The thermal-emf of Re3Si gave a zero value throughout the investigated temperature range. This substance is of practical interest as a material for contacts in high-temperature metal powder thermocouples.  相似文献   

4.
The need for structural materials with high-temperature strength and oxidation resistance coupled with adequate lower-temperature toughness for potential use at temperatures above ∼1000 °C has remained a persistent challenge in materials science. In this work, one promising class of intermetallic alloys is examined, namely, boron-containing molybdenum silicides, with compositions in the range Mo (bal), 12 to 17 at. pct Si, 8.5 at. pct B, processed using both ingot (I/M) and powder (P/M) metallurgy methods. Specifically, the oxidation (“pesting”), fracture toughness, and fatigue-crack propagation resistance of four such alloys, which consisted of ∼21 to 38 vol. pct α-Mo phase in an intermetallic matrix of Mo3Si and Mo5SiB2 (T2), were characterized at temperatures between 25 °C and 1300 °C. The boron additions were found to confer improved “pest” resistance (at 400 °C to 900 °C) as compared to unmodified molybdenum silicides, such as Mo5Si3. Moreover, although the fracture and fatigue properties of the finer-scale P/M alloys were only marginally better than those of MoSi2, for the I/M processed microstructures with coarse distributions of the α-Mo phase, fracture toughness properties were far superior, rising from values above 7 MPa √m at ambient temperatures to almost 12 MPa √m at 1300 °C. Similarly, the fatigue-crack propagation resistance was significantly better than that of MoSi2, with fatigue threshold values roughly 70 pct of the toughness, i.e., rising from over 5 MPa √m at 25 °C to ∼8 MPa √m at 1300 °C. These results, in particular, that the toughness and cyclic crack-growth resistance actually increased with increasing temperature, are discussed in terms of the salient mechanisms of toughening in Mo-Si-B alloys and the specific role of microstructure.  相似文献   

5.
This study is concerned with the correlation of microstructure and abrasive and sliding wear resistance of (TiC,SiC)/Ti-6Al-4V surface composites fabricated by high-energy electron-beam irradiation. The mixtures of TiC, SiC, Ti + SiC, or TiC+SiC powders and CaF2 flux were deposited on a Ti-6Al-4V substrate, and then an electron beam was irradiated on these mixtures. The surface composite layers of 1.2 to 2.1 mm in thickness were homogeneously formed without defects and contained a large amount (30 to 66 vol pct) of hard precipitates such as TiC and Ti5Si3 in the martensitic matrix. This microstructural modification, including the formation of hard precipitates in the surface composite layer, improved the hardness and abrasive wear resistance. Particularly in the surface composite fabricated with TiC + SiC powders, the abrasive wear resistance was greatly enhanced to a level 25 times higher than that of the Ti alloy substrate because of the precipitation of 66 vol pct of TiC and Ti5Si3 in the hardened martensitic matrix. During the sliding wear process, hard and coarse TiC and Ti5Si3 precipitates fell off from the matrix, and their wear debris worked as abrasive particles, thereby reducing the sliding wear resistance. On the other hand, needle-shaped Ti5Si3 particles, which did not play a significant role in enhancing abrasive wear resistance, lowered the friction coefficient and, accordingly, decelerated the sliding wear, because they played more of the role of solid lubricants than as abrasive particles after they fell off from the matrix. These findings indicated that high-energy electron-beam irradiation was useful for the development of Ti-based surface composites with improved abrasive and sliding wear resistance, although the abrasive and sliding-wear data should be interpreted by different wear mechanisms.  相似文献   

6.
Particulate VC-reinforced high-manganese austenitic steel matrix composites with different vanadium and tungsten contents were synthesized by conventional alloying and casting route. Microstructural characterizations showed that the composites processed by in situ precipitation of the reinforcements were composed of V8C7 particulates distributed in an austenitic matrix. It was observed that addition of tungsten to austenite increases work-hardening rate of subsurface layer during pin-on disk wear test. The maximum abrasive wear resistance was achieved at tungsten content equal to 2 wt pct. However, excessive addition of tungsten promoted the formation of W3C phase and reduced the abrasive wear resistance because of decrease in distribution homogeneity and volume fraction of the reinforcing VC particles.  相似文献   

7.
To improve the high-temperature strength of Nb-Mo-Ti-Si in-situ composites, alloying with W and a directional solidification technique were employed. The alloy composition of Nb-xMo-10Ti-18Si (x=10 or 20) was used as the base, and Nb was further replaced by 0, 5, 10 and 15 mol pct W. For samples without W, the as-cast microstructure was a eutectic mixture of fine Nb solid solution (Nb SS ) and (Nb, Me)5 Si3 silicide (Me = Mo, W, or Ti), while large primary Nb SS particles appeared besides the eutectic mixture as a result of replacing Nb by W. The directionally solidified samples consisted of coarse Nb SS and (Nb,Me)5 Si3 silicides, and the microstructure showed a slight orientation in the direction of growth. The maximum compressive ductility (ɛ max) at room temperature decreased with increasing W content and was in the range of 0.8 to 2.3 pct, in contrast to the Vickers hardness (HV), which increased with W content. The 0.2 pct yield compressive strength (σ 0.2) and the specific 0.2 pct yield compressive strength (σ 0.2S ) (σ 0.2 divided by the density of sample) at elevated temperatures were markedly improved by the W addition. The directionally solidified samples always showed higher σ 0.2 and σ 0.2S values than the as-cast samples. At elevated temperatures, the directionally solidified sample with 10 mol pct Mo and 15 mol pct W had the highest σ 0.2 and σ 0.2S values; even at 1770 K, σ 0.2 was as high as 650 MPa. The directionally solidified materials alloyed with W exhibited excellent compressive creep performance. The sample with 10 mol pct Mo and 15 mol pct W had a minimum creep rate of 1.4×10−7s−1 and retained steady creep deformation at 1670 K and an initial stress of 200 MPa. Under compression, the damage and failure of these in-situ composites were dominated by decohesion of interfaces between the Nb SS and silicide matrix.  相似文献   

8.
The kinetics of diffusion redistribution of phases within the system WSi2 W on heating tungsten silicide in air in the temperature range 1500-2000°C is studied. The stability and heat resistance of silicide coatings on tungsten is mainly governed by the diffusion of silicon towards the interphase boundaries W W5Si3, W5Si3 WSi2, and WSi2 SiO2, formation at them of diffusion barriers of lower silicide W5Si3, and also a protective SiO2 film at the outer boundary of the silicide coating. It is established that the transition rate for the higher to the lower tungsten silicide WSi2 W5Si3 is on average four times slower than the transition rate for MoSi2 Mo5Si3. It is shown that an increase in silicon concentration in the WSi2 surface layer stimulates formation of diffusion barrier compounds at interphase boundaries. This leads to an increase in the stability of the phase composition and heat resistance of a silicide coating on metals. In particular at 1700°C the transition rate for molybdenum silicide on tungsten MoSi2 (Mo, W)5Si3 is about twenty times slower than the transition rate for MoSi2 Mo5Si3, and less by a factor of about eleven than the transition rate for WSi2 W5Si3. Here there is also an increase in the heat resistance of silicide coatings on tungsten and molybdenum. It is shown that the SiO2 film on tungsten silicide does not lose its protective properties up to 2000°C.  相似文献   

9.
The synthesis of the Ni2Si, Ni5Si2, and NiSi phases has been investigated by mechanical alloying (MA) of Ni-33.3 at. pct Si, Ni-28.6 at. pct Si, and Ni-50 at. pct Si powder mixtures. As-received and 60-minute premilled elemental powders were subjected to MA. The average surface area of the premilled Ni powder particles, which had a flaky shape, was 3.5 times larger than that of the as-received Ni powder particles, which had a spherical shape. The as-received Si powder was angular in shape and the mean particle size was 19.1 μm, whereas the mean particle size of the premilled Si powder was 10 μm. A self-propagating high-temperature synthesis (SHS) reaction, followed by a slow solid-state diffusion reaction, was observed to produce Ni silicide phases during MA of the elemental powders. The reactants and the product, however, coexisted for a long period of MA time. On the other hand, only the SHS reaction was observed to produce Ni silicides during MA of the premilled elemental powders, indicating that Ni silicides formed rather abruptly in a short period of MA time. The mechanisms and reaction rates for the formation of Ni silicides via MA appeared to be influenced by the elemental powder particle size and shape as well as the heat of formation of the products.  相似文献   

10.
The demand for materials to be used in the components operating above 1100°C in advanced aero-engines drives the development of the silicide-based intermetallic alloys and composites, including the titanium silicides. The mechanical behaviour of Ti5Si3 and its composites has been reviewed with emphasis on the microstructure-property relationships. It is found that the grain size is a critical parameter, and smaller grain sizes are desirable for reducing the magnitude of internal residual stress caused by the crystallographic anisotropy in coefficients of thermal expansion. The reduction in grain size leads to significant improvement in hardness, room temperature flexural strength and fracture toughness. On the other hand, the high temperature strength observed at slow strain rates and creep resistance are higher in the samples with the coarser grain sizes. Further improvements in the strength, fracture toughness and high temperature creep resistance are possible, either through the development of multiphase alloys, or by the use of ceramic reinforcements in composites.  相似文献   

11.
System W-V-Si     
Conclusions The methods of x-ray structural and microstructural analyses were used to investigate the ternary system W-V-Si and to plot an isothermal section of this system at 1000° C. It was established that continuous series of solid solutions exist between the isostructural compounds W5Si3 and V5Si3. The solubility of tungsten in the compound V3Si is about 16 at. % W. The continuous solid solution between tungsten and vanadium decomposes at a temperature of 1000° C into two solid solutions: that of tungsten in vanadium (30 at. % W) and that of vanadium in tungsten (55 at. % V).Translated from Poroshkovaya Metallurgiya, No. 5 (53), pp. 85–88, May, 1967.  相似文献   

12.
Ni3Si alloys with 20, 30, and 40 wt pct Cr were fabricated by self-propagating high-temperature synthesis casting at 543 K. Thermite reaction (Cr2O3+5CrO3+12Al=7Cr+6Al2O3) was used in Cr alloying. The method is simple and economical when used to prepare Ni3Si-based alloys. The process is described in detail. The alloys were analyzed with X-ray diffraction (XRD) and scanning electron microscopy (SEM) with X-ray energy dispersive spectroscopy (EDS). The results showed the alloys mainly consisted of Ni3Si and Ni5Si2 with dissolved Cr and Cr phases. Phases and microstructures of the alloys varied with Cr content. Microhardness, bending and compressive strength, and wear rate of the alloys were measured. Microhardness of the alloys was higher than that of Ni3Si without Cr and increased with Cr content. Bending and compressive strength of the alloys were better than those of the Ni3Si without Cr, and those of the alloy with 30 wt pct Cr were the highest. The wear rate of the alloys was lower than that of the Ni3Si without Cr and decreased with Cr content.  相似文献   

13.
《粉末冶金学》2013,56(1-2):145-171
Abstract

The binary systems of silicides of the high-melting-point transition metals are now well understood, except for the hafnium-silicon system. Research since 1954 is reviewed, with particular reference to the compound Me5Si3 and its position in the silicide systems. Reference is also made to the pseudo-binary and pseudo-ternary silicide systems.

The structures of many of the intermetallic phases in the binary boride systems have now been determined, but complete equilibrium diagrams still remain to be established in some cases. New tentative diagrams are given for the systems vanadium–boron, niobium–boron, and tantalum–boron, and structures are suggested for the borides V3B2, Nb3B2, and Ta3B2 with the T2 structure (isostructural with U3Si2).

Ternary alloys of the systems Me–Si–B are of great interest, not only structurally but also for practical reasons. The complete systems Me–Si–B of Group VI (Mo–Si–B and W–Si–B) have accordingly been studied by X-ray, thermal-analysis, and micrographic methods. The system Cr–Si–B has been determined and attention is directed to the possible commercial applications of certain alloys containing additions of metals of the iron group, in particular nickel, for sprayed coatings resistant to liquid aluminium.

The question of cementing silicides and borides with metals and alloys is discussed theoretically. The character of the silicide or boride system in question and the behaviour of the intermediate phase in relation to the bonding material are of decisive importance for the selection of the latter. Only very limited data are to be found in the literature on the behaviour of silicides and borides in relation to metals and alloys. Alloys based on TiB2, ZrB2, MoSi2, and WSi2, impregnated with numerous metals and alloys, have been prepared. Their structures have been studied and the technical suitability of various combinations is discussed on the basis of their technological properties.  相似文献   

14.
The adiabatic elastic stiffness constants C ij of Ni-Si single-crystal solid-solution alloys of two slightly different compositions, 10.78 and 11.17 at. pct Si, were measured over the temperature range from 20 °C to 900 °C using the rectangular parallelepiped resonance method. The isotropic elastic constants of the polycrystalline ordered intermetallic compound Ni3Si containing 23 at. pct Si were also measured over this temperature range. Values of the C ij for Ni3Si were estimated from the data on the polycrystalline alloy, as well as from published data in the literature on isomorphous ternary ordered intermetallic compounds containing different amounts of Si. Using measured values and previously published data, the stiffness constants of Ni3Ti were estimated; these are the only available data on this alloy. The estimated single-crystal elastic constants of Ni3Si, as well as the experimentally measured bulk modulus, are considerably smaller than published values calculated from first-principles methods. The same is true for the C ij of Ni3Ti, but the discrepancies are smaller.  相似文献   

15.
Fatigue cracks were grown through several niobium-based materials. For Nb-Cr-Ti composition materials, the single-phase alloy represented the matrix of two in situ composites with about 22 and 38 vol pct Cr2Nb. Grain boundaries were coated with intermetallic in the lower-volume fraction material, while the 38 vol pct Cr2Nb composite consisted of mainly spherical, dispersed intermetallic. The Nb-10Si composite was composed of about 28 vol pct primary Nb5Si3, with most of the matrix alloy in “fiberlike” shapes due to extrusion. Crack growth rates through the composites were generally faster than for unalloyed Nb, roughly in proportion to the volume fraction of intermetallic, although differences in microstructure make this comparison difficult. The presence of intermetallic greatly alters deformation of material near the crack tip. Particles of Cr2Nb were broken during the crack growth process, leading to increased crack growth rates. These results suggest microstructural modifications that could be expected to enhance fatigue crack growth resistance.  相似文献   

16.
The Ni-Si-Mg ternary phase diagram has been established after homogenization and slow cooling to room temperature. The chemical compositions of the alloys and their phases were obtained using fully quantitative energy dispersive X-ray spectroscopy (EDS) with standard spectrum files created from intermetallic compounds Mg2Ni and Ni2Si. The following intermetallic phases have been observed: (a) four new ternary intermetallic phases, designated as ν, ω, μ, and τ, (b) a ternary intermediate phase Mg(Ni,Si)2 based on the binary MgNi2 phase containing Si; (c) three ternary intermetallic phases, η, κ, and ζ, previously reported by the present authors;[10] and (d) Mg2SiNi3 (Fe2Tb type),[9] previously reported by Noreus et al. [8] The MgNi6Si6 phase, which was also previously reported,[7] was not observed at the corresponding composition in the present work. However, the MgNi6Si6 phase reported as being of hexagonal symmetry (Cu7Tb type),[9] with the lattice parameters a=0.4948 nm and c=0.3738 nm, possibly corresponds to the μ phase (Mg(Si0.48Ni0.52)7) discovered in the present work. The lattice structure of the newly discovered ω phase was determined with the help of the X-ray indexing program TREOR (developed by Werner et al. [13]) to be a hexagonal structure of the Ag7Te4 type ((Mg0.52Ni0.48)7Si4) with the lattice parameters a=1.3511 nm and c=0.8267 nm.  相似文献   

17.
The synthesis of the Ni2Si, Ni5Si2, and NiSi phases has been investigated by mechanical alloying (MA) of Ni-33.3 at. pct Si, Ni-28.6 at. pct Si, and Ni-50 at pct Si powder mixtures. As-received and 60-minute premilled elemental powders were subjected to MA. The average surface area of the premilled Ni powder particles, which had a flaky shape, was 3.5 times larger than that of the asreceived Ni powder particles, which had a spherical shape. The as-received Si powder was angular in shape and the mean particle size was 19.1 μm, whereas the mean particle size of the premilled Si powder was 10 μm. A self-propagating high-temperature synthesis (SHS) reaction, followed by a slow solid-state diffusion reaction, was observed to produce Ni silicide phases during MA of the elemental powders. The reactants and the product, however, coexisted for a long period of MA time. On the other hand only the SHS reaction was observed to produce Ni silicides during MA of the premilled elemental powders, indicating that Ni silicides formed rather abruptly in a short period of MA time. The mechanisms and reaction rates for the formation of Ni silicidesvia MA appeared to be influenced by the elemental powder particle size and shape as well as the heat of formation of the products. W.H. LEE, Professor, formerly with the School of Metallurgical and Materials Engineering, Kookmin University, Seoul 133-791, Korea  相似文献   

18.
《粉末冶金学》2013,56(3):254-265
Abstract

Tungsten based W–1C and W–2B4C–1C (wt-%) powders synthesised by mechanical alloying (MA) for milling durations of 10, 20 and 30 h, in wet (ethanol) and dry conditions, were characterised. X-ray fluorescence spectroscopy investigations revealed Co contamination which increased with increasing milling time during wet milling. X-ray diffraction investigations revealed the presence of W and WC phases in all powders, Co3C intermetallic in the wet milled W–1C powders and W2B intermetallic phase in both wet and dry milled W–2B4C–1C powders. As blended and MA processed powders were consolidated into green compacts by uniaxial cold pressing at 500 MPa and solid phase sintered at 1680°C under hydrogen and argon atmospheres for 1 h. X-ray diffraction investigations revealed the presence of W2C intermetallic phase in sintered composites produced from both wet and dry milled W–1C powders and the W2B intermetallic phase in sintered material from the wet milled W–2B4C–1C powder. Sintered composites from wet milled powders showed relative densities >91%, with the maximum density of 99·5% measured for the sintered 30 h wet milled W–2B4C–1C composites. Microhardness values for the wet milled W–1C and W–2B4C–1C composites were 2–2·5 times higher than those for dry milled composite powders. A maximum hardness value of 23·7±2·1 GPa was measured for the sintered W–2B4C–1C composite wet milled for 20 h.  相似文献   

19.
20.
In-situ Al2O3/TiAl3 intermetallic matrix composites were fabricated via squeeze casting of TiO2/A356 composites heated in the temperature range from 700 °C to 780 °C for 2 hours. The phase transformation in TiO2/A356 composites employing various heat-treatment temperatures (700 °C to 780 °C) was studied by means of differential thermal analysis (DTA), microhardness, scanning electron microscopy (SEM), electron probe microanalysis (EPMA), and X-ray diffraction (XRD). From DTA, two exothermic peaks from 600 °C to 750 °C were found in the TiO2/A356 composites. The XRD showed that Al2O3 and TiAl3 were the primary products after heat treatment of the TiO2/A356 composite. The fabrication of in-situ Al2O3/TiAl3 composites required 33 vol pct TiO2 in Al and heat treatment in the range from 750 °C to 780 °C. The hardness (HV) of the in-situ Al2O3/TiAl3 composites (1000 HV) was superior to that of nonreacted TiO2/A356 composites (200 HV). However, the bending strength decreased from 685 MPa for TiO2/A356 composites to 250 MPa for Al2O3/TiAl3 composites. It decreased rapidly because pores occurred during the formation of Al2O3 and TiAl3. The activation energy of the formation of Al2O3 and TiAl3 from TiO2 and A356 was determined to be about 286 kJ/mole.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号