首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Surgical ablation of extrinsic cardiac nerve fibers results in a chronically denervated state of the left ventricle of the heart. The present study was performed to elucidate the effect of a period of 5 weeks of chronic denervation on cardiac catecholamine levels in general and dopamine in particular. Moreover, the possible effect on cardiac beta-adrenoceptor subtypes was investigated. Experiments were performed on adult dogs. In addition to adrenaline and noradrenaline the tissue levels of dopamine were found to be severely depressed. A significant shift from beta1- to beta2-adrenoceptor subtype was observed, while the total beta-adrenoceptor density remained unaffected. The present findings indicate that catecholamine synthesis in chronically denervated hearts is impaired upstream of dopamine and that a shift in beta-adrenoceptor subtype occurs already within a relatively short period of five weeks of denervation, and suggest that the lack of endogenous catecholamines influence the relative expression levels of the two subtypes of beta-adrenoceptors present in cardiac tissue.  相似文献   

3.
Brief elevation in postsynaptic calcium in hippocampal CA1 neurons leads to prolonged changes in synaptic strength. The calcium may enter the postsynaptic neuron via different routes, such as voltage-gated calcium channels or glutamate receptor channels of N-methyl-D-aspartate type, and/or be released from intracellular stores. The manner in which the synapse is altered, leading to the expression of an enhanced/depressed synaptic strength, is still unclear. The present study, performed using whole-cell recording from CA1 pyramidal cells of three- to five-week-old guinea-pigs, shows that postsynaptic depolarization alone, allowing for calcium influx through voltage-gated calcium channels, leads to a synaptic potentiation characterized by an altered time-course of the evoked excitatory synaptic response, an unaltered coefficient of variation of that response and a decreased paired-pulse facilitation likely related to a postsynaptic mechanism. These characteristics contrasted with those of long-term potentiation induced via activation of N-methyl-D-aspartate receptor channels, where the time-course was unaltered, the coefficient of variation was decreased and no change in paired-pulse facilitation was observed. Synapses can thus have mechanistically separate, but co-existent, potentiations of synaptic transmission initiated from separate sources for postsynaptic calcium.  相似文献   

4.
The proton-pumping NADH:ubiquinone oxidoreductase of Escherichia coli is composed of 14 different subunits and contains one FMN and up to nine iron-sulfur clusters as prosthetic groups. By use of salt treatment, the complex can be split into an NADH dehydrogenase fragment, a connecting fragment and a membrane fragment. The water-soluble NADH dehydrogenase fragment has a molecular mass of approximately 170,000 Da and consists of the subunits NuoE, F, and G. The fragment harbors the FMN and probably six iron-sulfur clusters, four of them being observable by EPR spectroscopy. Here, we report that the fully assembled fragment can be overproduced in E. coli when the genes nuoE, F, and G were simultaneously overexpressed with the genes nuoB, C, and D. Furthermore, riboflavin, sodium sulfide, and ferric ammonium citrate have to be added to the culture medium. The fragment was purified from the cytoplasm by means of ammonium sulfate fractionation and chromatographic steps. The preparation contains one noncovalently bound FMN per molecule. Two binuclear (N1b and N1c) and two tetranuclear (N3 and N4) iron-sulfur clusters were detected by EPR in the NADH reduced preparation with spectral characteristics identical with those of the corresponding clusters in complex I. The preparation fulfills all prerequisites for crystallization of the fragment.  相似文献   

5.
We have developed two independent methods to measure equilibrium binding of inhibitors to membrane-bound and partially purified NADH:ubiquinone oxidoreductase (complex I) to characterize the binding sites for the great variety of hydrophobic compounds acting on this large and complicated enzyme. Taking advantage of a partial quench of fluorescence upon binding of the fenazaquin-type inhibitor 2-decyl-4-quinazolinyl amine to complex I in bovine submitochondrial particles, we determined a Kd of 17 +/- 3 nM and one binding site per complex I. Equilibrium binding studies with [3H]dihydrorotenone and the aminopyrimidine [3H]AE F119209 (4(cis-4-[3H]isopropyl cyclohexylamino)-5-chloro-6-ethyl pyrimidine) using partially purified complex I from Musca domestica exhibited little unspecific binding and allowed reliable determination of dissociation constants. Competition experiments consistently demonstrated that all tested hydrophobic inhibitors of complex I share a common binding domain with partially overlapping sites. Although the rotenone site overlaps with both the piericidin A and the capsaicin site, the latter two sites do not overlap. This is in contrast to the interpretation of enzyme kinetics that have previously been used to define three classes of complex I inhibitors. The existence of only one large inhibitor binding pocket in the hydrophobic part of complex I is discussed in the light of possible mechanisms of proton translocation.  相似文献   

6.
The proton-translocating NADH:ubiquinone oxidoreductase of mitochondria (complex I) is a large L-shaped multisubunit complex. The peripheral matrix arm contains one FMN and a number of iron-sulfur (FeS) clusters and is involved in NADH oxidation and electron transfer to the membrane intrinsic arm. There, following a yet unknown mechanism, the redox-driven proton translocation and the ubiquinone reduction take place. Redox groups that would be able to link electron transfer with proton translocation have not been found so far in the membrane arm. We searched for such groups in complex I isolated from Neurospora crassa. Under anaerobic conditions, the preparation was analyzed in different redox states by means of UV/VIS and EPR spectroscopy. Absorption bands in the UV/VIS redox difference spectra were found which cannot be attributed to the FMN or the EPR detectable FeS clusters. The existence of two novel groups is postulated and their possible locations in the electron pathway and their roles in proton translocation are discussed.  相似文献   

7.
The reduction kinetics of coenzyme Q (CoQ, ubiquinone) by NADH:ubiquinone oxidoreductase (complex I, EC 1.6.99.3) was investigated in bovine heart mitochondrial membranes using water-soluble homologs and analogs of the endogenous ubiquinone acceptor CoQ10 [the lower homologs from CoQ0 to CoQ3, the 6-pentyl (PB) and 6-decyl (DB) analogs, and duroquinone]. By far the best substrates in bovine heart submitochondrial particles are CoQ1 and PB. The kinetics of NADH-CoQ reductase was investigated in detail using CoQ1 and PB as acceptors. The kinetic pattern follows a ping-pong mechanism; the Km for CoQ1 is in the range of 20 microM but is reversibly increased to 60 microM by extraction of the endogenous CoQ10. The increased Km in CoQ10-depleted membranes indicates that endogenous ubiquinone not only does not exert significant product inhibition but rather is required for the appropriate structure of the acceptor site. The much lower Vmax with CoQ2 but not with DB as acceptor, associated with an almost identical Km, suggests that the sites for endogenous ubiquinone bind 6-isoprenyl- and 6-alkylubiquinones with similar affinity, but the mode of electron transfer is less efficient with CoQ2. The Kmin (kcat/Km) for CoQ1 is 4 orders of magnitude lower than the bimolecular collisional constant calculated from fluorescence quenching of membrane probes; moreover, the activation energy calculated from Arrhenius plots of kmin is much higher than that of the collisional quenching constants. These observations strongly suggest that the interaction of the exogenous quinones with the enzyme is not diffusion-controlled. Contrary to other systems, in bovine submitochondrial particles, CoQ1 usually appears to be able to support a rate approaching that of endogenous CoQ10, as shown by application of the "pool equation" [Kr?ger, A., & Klingenberg, M. (1973) Eur. J. Biochem. 39, 313-323] relating the rate of ubiquinone reduction to the rate of ubiquinol oxidation and the overall rate through the ubiquinone pool.  相似文献   

8.
Based on the results obtained from GTP overlay assay, immunoprecipitation, two dimensional electrophoresis and radiolabeled GTP binding, we provide evidence that the bona fide subunit of Complex I, the long known 24 kDa protein is a G protein. Bacterially expressed 24 kDa protein with additional N-terminal methionine and alanine residues or naturally expressed truncated isoform fail to bind GTP suggesting that secondary modification/ processed N-terminal end is necessary for GTP binding. Competitive inhibition of binding of radiolabeled GTP to electroblotted 24 kDa protein with unlabelled nucleotides showed that the protein binds GTP and GDP with high affinity in presence of Mg2+, and has decreased to very low affinity for ITP, CTP, GMP and UTP. A comparative binding of [gamma-35S]-GTP to Complex I and 24 kDa protein (electroblotted) suggests that the GTP binding in the native Complex is solely due to 24 kDa protein. Further, four fold difference in the binding affinities between native Complex I and 24 kDa protein (electroblotted) as seen by Scatchard analysis of the binding data indicates that protein undergoes structural rearrangement in Complex I bound form, that presumably triggers divalent cation dependent GTPase activity in native complex. We were unable to detect the effect of GTP/ GDP on the ubiquinone/ferricyanide reductase activity. Since the subunit is found missing in tissues affected by mitochondrial respiratory chain diseases, we presume that the subunit has regulatory role in the Complex I function in the electron transport chain.  相似文献   

9.
The structures of two novel fungal antibiotics, isolated from a Pterula species, that interfere with the NADH:ubiquinone oxidoreductase and inhibit the respiration of eucaryotes, were determined by spectroscopic techniques. Both compounds, pterulinic acid (1a) and pterulone (2), contain a 1-benzoxepin ring system and are chlorinated. Pterulinic acid (1a), which was obtained as a 1:5 inseparable mixture of the two isomers (Z)-1a and (E)-1a, in addition contains a furan. Their structures were determined by mass spectrometry and NMR spectroscopy, and 2D heteronuclear correlation experiments permitted the assignment of all NMR signals.  相似文献   

10.
It has been shown that treatment of bovine mitochondrial complex I (NADH-ubiquinone oxidoreductase) with NADH or NADPH, but not with NAD or NADP, increases the susceptibility of a number of subunits to tryptic degradation. This increased susceptibility involved subunits that contain electron carriers, such as FMN and iron-sulfur clusters, as well as subunits that lack electron carriers. Results shown elsewhere on changes in the cross-linking pattern of complex I subunits when the enzyme was pretreated with NADH or NADPH (Belogrudov, G., and Hatefi, Y. (1994) Biochemistry 33, 4571-4576) also indicated that complex I undergoes extensive conformation changes when reduced by substrate. Furthermore, we had previously shown that in submitochondrial particles the affinity of complex I for NAD increases by >/=20-fold in electron transfer from succinate to NAD when the particles are energized by ATP hydrolysis. Together, these results suggest that energy coupling in complex I may involve protein conformation changes as a key step. In addition, it has been shown here that treatment of complex I with trypsin in the presence of NADPH, but not NADH or NAD(P), produced from the 39-kDa subunit a 33-kDa degradation product that resisted further hydrolysis. Like the 39-kDa subunit, the 33-kDa product bound to a NADP-agarose affinity column, and could be eluted with a buffer containing NADPH. It is possible that together with the acyl carrier protein of complex I the NADP(H)-binding 39-kDa subunit is involved in intramitochondrial fatty acid synthesis.  相似文献   

11.
The Na(+)-translocating NADH:ubiquinone oxidoreductase from Vibrio alginolyticus was extracted from the bacterial membranes and purified by ion exchange chromatographic procedures. The enzyme catalyzed NADH oxidation by suitable electron acceptors, e.g. menadione, and the Na+ and NADH-dependent reduction of ubiquinone-1. Four dominant bands and a number of minor bands were visible on SDS-PAGE that could be part of the enzyme complex. Flavin analyses indicated the presence of FAD but no FMN in the purified enzyme. FAD but no FMN were also present in V. alginolyticus membranes. FAD is therefore a prosthetic group of the Na(+)-translocating NADH:ubiquinone oxidoreductase and FMN is not present in the enzyme. The FAD was copurified with the NADH dehydrogenase. The purified enzyme exhibited an absorption spectrum with a maximum at 450 nm that is typical for a flavoprotein. Upon incubation with NADH this absorption disappeared indicating reduction of the enzyme-bound FAD.  相似文献   

12.
13.
The NDI1 gene encoding rotenone-insensitive internal NADH-quinone oxidoreductase of Saccharomyces cerevisiae mitochondria was cotransfected into the complex I-deficient Chinese hamster CCL16-B2 cells. Stable NDI1-transfected cells were obtained by screening with antibiotic G418. The NDI1 gene was shown to be expressed in the transfected cells. The expressed Ndi1 enzyme was recognized to be localized to mitochondria by immunoblotting and confocal immunofluorescence microscopic analyses. Using digitonin-permeabilized cells, it was shown that the transfected cells, but not nontransfected control cells, exhibited the electron transfer activities with glutamate/malate as the respiratory substrate. The activities were inhibited by flavone, antimycin A, and KCN but not by rotenone. Added NADH did not serve as the substrate, suggesting that the expressed Ndi1 enzyme was located on the matrix side of the inner mitochondrial membranes. Furthermore, although nontransfected cells could not survive in a medium low in glucose (0.6 mM), which is a substrate of glycolysis, the NDI1-transfected cells were able to grow in the absence of added glucose. When glycolysis is slow, either at low glucose concentrations or in the presence of galactose, respiration is required for cells to survive. The mutant cells do not survive at low glucose or in galactose, but they can be rescued by Ndi1. These results indicated that the S. cerevisiae Ndi1 was expressed functionally in CCL16-B2 cells and catalyzed electron transfer from NADH in the matrix to ubiquinone-10 in the inner mitochondrial membranes. It is concluded that the NDI1 gene provides a potentially useful tool for gene therapy of mitochondrial diseases caused by complex I deficiency.  相似文献   

14.
Rotenone and rotenoid-containing botanicals, important insecticides and fish poisons, are reported to have anticancer activity in rats and mice. The toxic action of rotenone is attributed to inhibition of NADH:ubiquinone oxidoreductase activity and the purported cancer chemopreventive effect of deguelin analogs has been associated with inhibition of phorbol ester-induced ornithine decarboxylase (ODC) activity. This study defines a possible relationship between these two types of activity important in evaluating the toxicology of rotenoid pesticides and the suitability of the anticancer model. Fractionation of cubé resin (the commercial rotenoid pesticide) establishes that the activity in both assays is due primarily to rotenone (IC50 = 0.8-4 nM), secondarily to deguelin, and in small part to rotenolone and tephrosin. In addition, the potency of 29 rotenoids from cubé insecticide for inhibiting NADH:ubiquinone oxidoreductase in vitro assayed with bovine heart electron transport particles satisfactorily predicts their potency in vivo in the induced ODC assay using noncytotoxic rotenoid concentrations with cultured MCF-7 human breast cancer cells (r = 0.86). Clearly the molecular features of rotenoids essential for inhibiting NADH:ubiquinone oxidoreductase are similar to those for blocking ODC induction. This apparent correlation extends to 11 flavonoids and stilbenoids from cubé resin (r = 0.98) and genistein and resveratrol except for lower potency and less selectivity than the rotenoids relative to cytotoxicity. These findings on cubé insecticide constituents and our earlier study comparing rotenone and pyridaben miticide indicate that inhibition of NADH:ubiquinone oxidoreductase activity lowers the level of induced ODC activity leading to the antiproliferative effect and anticancer action.  相似文献   

15.
An iron-sulfur flavoprotein (Isf) from the methanoarchaeaon Methanosarcina thermophila, which participates in electron transfer reactions required for the fermentation of acetate to methane, was characterized by electrochemistry and EPR and M?ssbauer spectroscopy. The midpoint potential (Em) of the FMN/FMNH2 couple was -0.277 V. No flavin semiquinone was observed during potentiometric titrations; however, low amounts of the radical were observed when Isf was quickly frozen after reaction with CO and the CO dehydrogenase/acetyl-CoA synthase complex from M. thermophila. Isf contained a [4Fe-4S]2+/1+ cluster with g values of 2.06 and 1.93 and an unusual split signal with g values at 1.86 and 1.82. The unusual morphology was attributed to microheterogeneity among Isf molecules. The Em value for the 2+/1+ redox couple of the cluster was -0.394 V. Extracts from H2-CO2-grown Methanobacterium thermoautotrophicum cells catalyzed either the H2- or CO-dependent reduction of M. thermophila Isf. In addition, Isf homologs were found in the genomic sequences of the CO2-reducing methanoarchaea M. thermoautotrophicum and Methanococcus jannaschii. These results support a general role for Isf in electron transfer reactions of both acetate-fermenting and CO2-reducing methanoarchaea. It is suggested that Isf functions to couple electron transfer from ferredoxin to membrane-bound electron carriers, such as methanophenazine and/or b-type cytochromes.  相似文献   

16.
Colonization-defective, transposon-induced mutants of the efficient root colonizer Pseudomonas fluorescens WCS365 were identified with a gnotobiotic system. Most mutants were impaired in known colonization traits, i.e., prototrophy for amino acids, motility, and synthesis of the O-antigen of LPS (lipopolysaccharide). Mutants lacking the O-antigen of LPS were impaired in both colonization and competitive growth whereas one mutant (PCL1205) with a shorter O-antigen chain was defective only in colonization ability, suggesting a role for the intact O-antigen of LPS in colonization. Eight competitive colonization mutants that were not defective in the above-mentioned traits colonized the tomato root tip well when inoculated alone, but were defective in competitive root colonization of tomato, radish, and wheat, indicating they contained mutations affecting host range. One of these eight mutants (PCL1201) was further characterized and contains a mutation in a gene that shows homology to the Escherichia coli nuo4 gene, which encodes a subunit of one of two known NADH:ubiquinone oxidoreductases. Competition experiments in an oxygen-poor medium between mutant PCL1201 and its parental strain showed a decreased growth rate of mutant PCL1201. The requirement of the nuo4 gene homolog for optimal growth under conditions of oxygen limitation suggests that the root-tip environment is micro-aerobic. A mutant characterized by a slow growth rate (PCL1216) was analyzed further and contained a mutation in a gene with similarity to the E. coli HtrB protein, a lauroyl transferase that functions in lipid A biosynthesis.  相似文献   

17.
Complex II (succinate:ubiquinone oxidoreductase) from Escherichia coli contains four different subunits. Two of the subunits (SDHC and SDHD) are hydrophobic and anchor the two more hydrophilic (flavin and iron-sulfur) subunits (SDHA and SDHB) to the cytoplasmic membrane. Previous studies have shown that the complex of SDHC/SDHD is required to maintain the heme B component of the enzyme and that the heme B is ligated to the protein by two histidine ligands. In the current work, the histidines within SDHC and SDHD have been systematically mutated. SDHC-His91 and SDHD-His14 were eliminated as potential ligands by these studies. SDHC-His84 and SDHD-His71 have been identified as the most likely heme axial ligands in the E. coli enzyme, suggesting that the heme bridges these two subunits in the membrane. Furthermore, the results show that the four-subunit Complex II assembles and retains function despite the absence of the heme B prosthetic group in the membrane. The results do not rule out completely SDHC-His30 as a candidate for heme ligation, but do show that mutation at this position prevents assembly of Complex II in the membrane.  相似文献   

18.
The role of stress, arousal, emotional trauma, and corticosteroid and enkephalin secretion on memory and the hippocampus, and the development of traumatic amnesia and repressed memory syndrome are detailed. Animal and human studies are reviewed. Trauma-induced memory deficits appear to be secondary to abnormal neocortical and hippocampal arousal, and corticosteroid and enkephalin secretion which can induce atrophy or seizures within the hippocampus, suppress hippocampal theta activity and long term potentiation, as well as injure hippocampal pyramidal cells. Predisposing factors include individual, age, and sex differences in arousal, and previous emotional trauma or temporal lobe or hippocampal injury. However, as the amygdala processes and stores emotional experiences in memory, patients may also demonstrate trauma related symptoms, including flashbacks as well as shrinking retrograde amnesia.  相似文献   

19.
20.
NADH:ubiquinone oxidoreductase (complex I) of the mitochondrial respiratory chain can be fragmented in a flavoprotein (FP), iron-sulfur protein (IP), and hydrophobic protein (HP) subfraction. The IP subfraction is hypothesized to be significant, since it contains important prosthetic groups highly conserved among species. We cloned the cDNA of three remaining human NADH:ubiquinone oxidoreductase subunits of this IP fraction: the NDUFS2 (49 kDa), NDUFS3 (30 kDa), and NDUFS6 (13 kDa) subunits. All presented cDNAs include the complete open reading frame (ORF), which consist of 1392, 795, and 375 base pairs, coding for 463, 264, and 124 amino acids, respectively. The latter show 96, 90, and 83% homology with the corresponding bovine translation products. The 3' untranslated regions (UTR) are complete in all three cDNAs. Polymerase chain reaction performed with DNA isolated from somatic human-rodent cell hybrids containing defined human chromosomes as template gave a human-specific signal which mapped the NDUFS2 and NDUFS3 subunits to chromosomes 1 and 11, respectively. In the case of the NDUFS6 subunit a pseudogene may be present since signals were seen in the lanes containing chromosomes 5 and 6. The NDUFS2 contains a highly conserved protein kinase C phosphorylation site and the NDUFS3 subunit contains a highly conserved casein kinase II phosphorylation site which make them strong candidates for future mutation detection studies in enzymatic complex I-deficient patients.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号