首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
C. -E. Høy  G. Hølmer 《Lipids》1981,16(2):102-108
The incorporation of the dietarycis 18∶1 (n−12) andcis 18∶1 (n−10) into liver mitochondrial membrane phospholipids and adipose tissue trigly cerides was studied in 4 groups of rats fed diets containing 10 weight percent (wt%) of fat with the following contents of octadecenoic acids: 50%cis 18∶1(n−12) +9%cis 18∶1 (n−9); 25%cis 18∶1 (n−12)+32%cis 18∶1 (n−9); 50%cis 18∶1 (n−10)+10%cis 18∶1 (n−9); or 54%cis 18∶1 (n−9). Dietary linoleic acid was 3 wt% in all 4 groups. In the mitochondrial membranes, the isomeric octadecenoic acids were primarily incorporated into the 1-position of phosphatidylcholines and phosphatidylethanolamines at the expense of saturated fatty acids. The maximal incorporations observed in the 1-position of phosphatidylethanolamines were 4.8% 18∶1 (n−12) and 8.9% 18∶1 (n−10). No effects on the contents of polyunsaturated fatty acids in the phospholipids were seen. In the adipose tissue, the isomeric octadecenoic acids were incorporated at a level of 13%cis 18∶1 (n−12) or 23%cis 18∶1 (n−10), paralleled by a reduction in the content of oleic acid. Presented in part at the 9th Scandinavian Symposium on Lipids, Visby, Sweden, June 1977.  相似文献   

2.
Cherian G  Goeger MP 《Lipids》2004,39(1):31-36
The effect of dietary CLA and n−3 PUFA on hepatic TAG accumulation, histopathology, and FA incorporation in lipid classes by laying chickens was investigated. One hundred twenty 30-wk-old single-comb white leghorn laying hens were distributed randomly to four treatments (3 replications of 10 birds) and were fed diets containing CLA and animal fat (Diet I), 18∶3n−3 (Diet II), or long-chain n−3 FA (Diet III). A sunflower oil (n−6 FA)-based diet was the control. Feeding Diet I resulted in an increase in hepatic total lipids (P<0.05). The liver TAG content was 32.2, 18.9, 29.4, and 18.7 mg/g for hens fed Diet I, Diet II, Diet III, and the control diet, respectively (P<0.05). The serum TAG was lowest in bilds fed Diet II (P<0.05). Diet I resulted in an increase in the total number of fat vacuoles and lipid infiltration in hepatocytes (P<0.05). The number of cells with 75% or higher lipid vacuolation was observed only in birds fed Diet I. Feeding diets containing CLA resulted in an increase in the content of the c9,t11 CLA isomer in liver TAG and PC (P<0.05). No difference was observed in the CLA concentration of hepatic PE fractions. The content of DHA (22∶6n−3) was higher in the TAG, PC, and PE of hens fed Diet II and Diet III than Diet I and the control (P<0.05). Feeding CLA resulted in an increase in total saturated FA in the TAG and PC fractions (P<0.05). Long-term feeding of CLA in laying birds leads to an increase in liver TAG and may predispose birds to fatty liver hemorrhagic syndrome.  相似文献   

3.
Adlof  R. O.  Emken  E. A. 《Lipids》1986,21(9):543-547
Thetrans 16∶1, 18∶1 and 18∶2 fatty acid composition of various human organ lipids was studied to determine if isomers accumulated in specific tissues. “Trans” isomers are defined as those fatty acids containing one or moretrans double bonds. Adipose, kidney, brain, heart and liver tissue lipids were analyzed. Gas chromatography with a 100-SP2560 capillary column was used to characterize the various positional and/or geometrical isomers. The distribution ofrans 16∶1 and 18∶1 isomers ranged from 0.3% in the brain to 4.0% in adipose tissue, whiletrans 18∶2 isomers ranged from 0.0% in the brain to 0.4% in adipose tissue. Notrans 18∶3 isomers were detected. Positional isomer ratios forcis 16∶1 (Δ9 vs Δ7) andcis 18∶1 (Δ11 vs Δ9) were also determined. Since these ratios are reproducible from one individual to the next, they might be useful for diagnosis of human metabolic disorders.  相似文献   

4.
Triglycerides containingcis- andtrans-12-octadecenoic acid (12c-18∶1 and 12t-18∶1) andcis-9-octadecenoic acid (9c-18∶1) labeled with deuterium were fed to 2 young adult male subjects. These fatty isomers each contained a different number of deuterium labels, which allowed mass spectrometric analysis to distinguish among them after they were fed as a mixture. This approach results in a direct comparison of the absorption and distribution of these 3 monoenoic acids into blood plasma and lipoprotein lipids. Plasma lipid data indicated that all phospholipid fractions selectively incorporate 12c-18∶1 and 12t-18∶1 in preference to 9c-18∶1. Discrimination against 12c-18∶1 and 12t-18∶1 compared to 9c-18∶1 was found in the plasma neutral lipids, with a strong discrimination against 12t-18∶1 incorporation into the cholesteryl ester fraction. Considerable reduction in the percentage of linoleic and arachidonic acid was observed when 12–18∶1 isomers were incorporated in plasma triglyceride, phosphatidylcholine and sphingomyelin samples. Chylomicron lipid analyses indicated that all isomers were well absorbed. Variation was observed in the relative distribution of 12c-18∶1, 12t-18∶1 and 9c-18∶1 between the very low density, low density and high density lipoprotein lipid classes. No desaturation of 12c-18∶1 to linoleic acid was detected.  相似文献   

5.
Pigs were fed a commercial conjugated linoleic acid (CLA) mixture, prepared by alkali isomerization of sunflower oil, at 2% of the basal diet, from 61.5 to 106 kg live weight, and were compared to pigs fed the same basal diet with 2% added sunflower oil. The total lipids from liver, heart, inner back fat, and omental fat of pigs fed the CLA diet were analyzed for the incorporation of CLA isomers into all the tissue lipid classes. A total of 10 lipid classes were isolated by three-directional thin-layer chromatography and analyzed by gas chromatography (GC) on long capillary columns and by silver-ion high-performance liquid chromatography (Ag+-HPLC); cholesterol was determined spectrophotometrically. Only trace amounts (<0.1%; by GC) of the 9,11–18∶2 cis/trans and trans, trans isomers were observed in pigs fed the control diet. Ten and twelve CLA isomers in the diet and in pig tissue lipids were sepatated by GC and Ag+-HPLC, respectively. The relative concentration of all the CLA isomers in the different lipid classes ranged from 1 to 6% of the total fatty acids. The four major cis/trans isomers (18.9% 11 cis, 13 trans-18∶2; 26.3% 10 trans, 12 cis-18∶2; 20.4% 9 cis, 11 trans-18∶2; and 16.1% 8 trans, 10 cis-18∶2) constituted 82% of the total CLA isomers in the dietary CLA mixture, and smaller amounts of the corresponding cis,cis (7.4%) and trans,trans (10.1%) isomers were present. The distribution of CLA isomers in inner back fat and in omental fat of the pigs was similar to that found in the diet. The liver triacylglycerols (TAG), free fatty acids (FFA), and cholesteryl esters showed a similar patterns to that found in the diet. The major liver phospholipids showed a marked increase of 9 cis,11 trans-18∶2, ranging from 36 to 54%, compared to that present in the diet. However, liver diphosphatidylglycerol (DPG) showed a high incorporation of the 11 cis,13 trans-18∶2 isomer (43%). All heart lipid classes, except TAG, showed a high content of 11 cis,13 trans-18∶2, which was in marked contrast to results in the liver. The relative proportion of 11 cis,13 trans-18∶2 ranged from 30% in the FFA to 77% in DPG. The second major isomer in all heart lipids was 9 cis,11 trans-18∶2. In both liver and heart lipids the relative proportions of both 10 trans,12 cis-18∶2 and 8 trans,10 cis-18∶2 were significantly lower compared to that found in the diet. The FFA in liver and heart showed the highest content of trans,trans isomers (31 to 36%) among all the lipid classes. The preferential accumulation of the 11 cis,13 trans-18∶2 into cardiac lipids, and in particular the major phospholipid in the inner mitochondrial membrane, DPG, in both heart and liver, appears unique and may be of concern. The levels of 11 cis,13 trans-18∶2 naturally found in foods have not been established.  相似文献   

6.
The effects of dietarytrans fatty acids on the fatty acid composition of the brain in comparison with other organs were studied in 3-wk-old suckling piglets. In Experiment (Expt.) 1 the piglets were delivered from sows fed partially hydrogenated fish oil (PHFO) (28%trans), partially hydrogenated soybean oil (PHSBO) (36%trans) or lard (0%trans). In Expt. 2 the piglets were delivered from sows fed PHFO, hydrogenated fish oil (HFO) (19%trans) or coconut fat (CF) (0%trans) with two levels of dietary linoleic acid (1 and 2.7%) according to factorial design. In both experiments the mother's milk was the piglets' only food. The level of incorporation oftrans fatty acids in the organs was dependent on the levels in the diets and independent of fat source (i.e., PHSBO, PHFO or HFO). Incorporation oftrans fatty acids into brain PE (phosphatidylethanolamine) was non-detectable in Expt. 1. In Expt. 2, small amounts (less than 0.5%) of 18∶1trans isomers were found in the brain, the level being slightly more on the lower level of dietary linoleic acid compared to the higher. In the other organs the percentage of 18∶1trans increased in the following order: heart PE, liver mitochondria PE, plasma lipids and subcutaneous adipose tissue. Small amounts of 20∶1trans were found in adipose tissue and plasma lipids. Other very long-chain fatty acids from PHFO or HFO (i.e., 20∶1cis and 22∶1cis+trans) were found in all organ lipids except for brain PE. Dietarytrans fatty acids increased the percentage of 22∶5n−6 in brain PE. Except for the brain and the heart, dietarytrans fatty acids reduced the percentage of saturated fatty acids and increased the percentage of monoenoic acids (includingtrans). The overall conclusion was that dietarytrans fatty acids had no noticeable effect on the brain PE composition but slight to moderate effects on the fatty acid profile of other organs of suckling piglets.  相似文献   

7.
The purpose of this study was to examine the effects of two purified isomers of CLA (c9,t11-CLA and t10,c12-CLA) on the weights and FA compositions of hepatic TG, phospholipids, cholesterol esters, and FFA. Eight-week-old female mice (n=6/group) were fed either a control diet or diets supplemented with 0.5% c9,t11-CLA or t10, c12-CLA isomers for 8 wk. Weights of liver total lipids and those of individual lipid fractions. did not differ between the control and the c9,t11-CLA groups. Livers from animals fed the t10,c12-CLA diet contained four times more lipids than those of the control group; this was mainly due to an increase in the TG fractions (fivefold), but cholesterol (threefold), cholesterol esters (threefold), and FFA (twofold) were also significantly increased. Although c9,t11-CLA did not significantly alter the weights of liver lipids when compared with the control group, its intake was associated with significant reductions in the weight percentage (wt% of total FAME) of 18∶1n−9 and 18∶1n−7 in the TG fraction and with significant increases in the weight percentage of 18∶2n−6 in the TG, cholesterol ester, and phospholipid fractions. on the other hand, t10,c12-CLA intake was linked with a significant increase in the weight percentage of 18∶1n−9 and a decrease in that of 18∶2n−6 in all lipid fractions. These changes may be the result of alterations in the activity of Δ9-desaturase (stearoyl CoA desaturase) and the enzymes involved in the metabolism of 18∶2n−6. Thus, the two isomers differed not only in their effects on the weights of total liver lipids and lipid fractions but also on the FA profile of the lipid fractions.  相似文献   

8.
Previous work had shown that dietarytrans fatty acids (tFA) resulted in decreased fat deposition in adipose tissue. This study was conducted to see iftFA influence lipid accumulation in Swiss mouse fibroblast 3T3-L1 cells, which are widely used as an adipocyte model. Cells were cultured in the presence of experimental or control growth media supplemented with fatty acids complexed to bovine serum albumin. Fatty acid compositions of experimental and control growth media were similar except that the octadecenoates in the control growth media werecis fatty acids, whereas those in the experimental media contained bothcis andtrans fatty acids. Cell-conditioned media and cellular lipids at the preadipocyte and differentiating adipocyte stages were analyzed. At both stages of development, less fat accumulated, in cells cultured in the presence oftFA, due primarily to a decrease in the nonpolar lipid content of cells exposed totFA, and linoleate to arachidonate ratios were higher in cells supplemented withtFA. Calculations comparing sums of saturated and monounsaturated fatty acids in cells at the differentiating adipocyte stage suggested thattFA may have replaced monoun-saturated fatty acids in the nonpolar lipid fraction and saturated fatty acids in the polar lipid fraction. The results of these studies are in good agreement with thein vivo effects oftFA seen in previous work with mouse adipose tissue. It was concluded that the 3T3-L1in vitro model is an appropriate system for further studies oftFA and lipid metabolism in adipose tissue.  相似文献   

9.
Hyperphagia was achieved by continuous intracerebroventricular infusion of a melanocortin receptor antagonist (HS024; Neosystem, Strasbourg, France) in rats. The effects of hyperphagia on FA composition and concentration of plasma phospholipids (PL), plasma FFA, and adipose tissue TAG were studied in rats for 8 d [short-term hyperphagia (STH); n=8], or 28 d [longterm hyperphagia (LTH); n=9]. The control rats were treated with artificial cerebrospinal fluid for 8 d (n=8) or 28 d (n=10). The rats were fed the same regular diet. In STH rats the plasma PL and fasting plasma FFA contained higher concentrations of saturated FA (SFA) and monounsaturated FA (MUFA), and plasma FFA contained lower n−6 PUFA than in the control rats. In LTH rats the plasma PL contained higher concentrations of SFA, MUFA, and n−3 PUFA and higher proportions of 16∶1n−7 and 18∶1n−9 at the expense of 18∶2n−6 than in the control rats. In LTH rats the abundant dietary intake of 18∶2n−6 did not enrich 18∶2n−6 of the plasma PL or adipose tissue TAG. In LTH rats the fasting plasma FFA contained more than twofold higher concentrations of SFA and MUFA, and higher proportions of 16∶1n−7 and 18∶1n−9 at the expense of 18∶2n−6 than in the control rats. This animal obesity model shows that LTH affects the FA composition and concentration of plasma PL, plasma FFA, and adipose tissue TAG, a result consistent with changes associated with increased risk of various diseases in humans. These results also demonstrate that LTH alters the FA composition of plasma PL and adipose tissue TAG in a way that does not reflect the FA composition of dietary fat.  相似文献   

10.
Effects of feeding a high-energy diet that contained extruded soybeans on fatty acid composition of lipids of adipose tissue, skeletal muscle and plasma were determined for 18 Angus steers. Steers weighing an average of 309 kg were fed either a control diet or a diet containing 14.3% extruded soybeans and 6% fat until they weighed 474 kg. A third group was fed the control diet for the first half of the experiment and the soybean-containing diet for the rest of the experiment. Samples of blood, muscle (M. trapezius) and subcutaneous adipose tissue were obtained at 309, 368 and 427 kg of body weight; steers were slaughtered at 474 kg body weight, and samples of subcutaneous and perirenal adipose tissues,M. longissimus and blood were obtained. The lipids of subcutaneous adipose tissue taken at slaughter of all steers fed full-fat, extruded soybeans contained 24% more 18:2 and 18:3 than did those of steers fed the control diet. Extruded soybeans also caused an increase in 18:3 but only a slight increase in 18:2 in perirenal adipose tissue. The proportion of unsaturated fatty acids of lipids inM. trapezius increased slightly with dietary soybeans, whereas that ofM. longissimus was not affected. Lipids of blood plasma of soybean-fed steers contained a greater proportion of 18:2 and 18:3 and concomitantly less 14:0, 15:0, 16:1 and 17:0. Results indicate that feeding steers enough extruded soybeans to raise the fat content of the diet to 6% increases the proportion of polyunsaturated fatty acids of tissue lipids of cattle, and that this altered composition results from an increased amount of these fatty acids being available for absorption by the small intestine.  相似文献   

11.
This study examined the effects of feeding pasture vs. concentrate on the distribution of CLA isomers in the lipids of longissimus and semitendinosus muscle, liver and heart muscle, and subcutaneous fat in beef bulls. Sixty-four German Holstein and German Simmental bulls were randomly allocated to either an indoor concentrate system or periods of pasture feeding followed by a finishing period on a concentrate containing linseed to enhance their beef content of n−3 PUFA and CLA. The concentrations of CLA isomers in the different tissues were determined by GC and silver ion HPLC. The diet affected the distribution of individual CLA isomers in the lipids of the different tissues. The concentration (mg/100 g fresh tissue) of the most prominent isomer, cis-9,trans-11 18∶2, was increased up to 1.5 times in liver and heart tissue of bulls fed on pasture as compared with concentrate. However, no diet effect was observed for cis-9,trans-11 18∶2 in the lipids of longissimus muscle and subcutaneous fat. In all tissues, the second-most abundant CLA isomer in concentratefed bulls was trans-7,cis-9 18∶2. In contrast, trans-11,cis-13 18∶2 was the second-most abundant CLA isomer in all investigated tissue lipids of pasture-fed bulls. The concentration of the trans-11,cis-13 18∶2 isomer was up to 15 times higher in tissues of pasture-fed bulls as compared with concentrate-fed animals. Furthermone, diet affected the concentrations of the CLA trans,trans 18∶2 isomers. Pasture feeding significantly increased the concentrations of some trans,trans 18∶2 isomers as compared with concentrate, predominantly trans-12,trans-14 18∶2 and trans-11,trans-13 18∶2. Overall, pasture feeding resulted in significantly increased concentrations of the sum of CLA isomers in the lipids of longissimus, muscle, subcutaneous fat, heart and liver muscle of German Holstein and German Simmental bulls, but not in semitendinosus muscle.  相似文献   

12.
Mixtures of triglycerides containing deuterium-labeled hexadecanoic acid (16∶0), octadecanoic acid (18∶0),cis-9-octadecenoic acid (9c–18∶1),cis-9,cis-12-octadecadienoic acid (9c, 12c–18∶2) andcis-12,trans-15-octadecadienoic acid (12c,15t–18∶2) were fed to two young-adult males. Plasma lipid classes were isolated from samples collected periodically over 48 hr. Incorporation and turnover of the deuterium-labeled fats in plasma lipids were followed by gas chromatography-mass spectrometry (GC-MS) analysis of the methyl ester derivatives. Absorption of the deuterated fats was followed by GC-MS analysis of chylomicron triglycerides isolated by ultracentrifugation. Results were the following: (i) endogenous fat contributed about 40% of the total fat incorporated into chylomicron triglycerides; (ii) elongation, desaturation and chain-shortened products from the deuterated fats were not detected; (iii) the polyunsaturated isomer 12c,15t–18∶2 was metabolically more similar to saturated and 9c–18∶1 fatty acids than to 9c,12c–18∶2 (iv) relative incorporation of 9c,12c–18∶2 into phospholipids did not increase proportionally with an increase of 9c,12c–18∶2 in the mixture of deuterated fats fed; (v) absorption of 16∶0, 18∶0, 9c–18∶1, 9c,12c–18∶2 and 12c,15t–18∶2 were similar; and (vi) data for the 1- and 2-acyl positions of phosphatidylcholine and for cholesteryl ester fractions reflected the known high specificity of phosphatidylcholine acyltransferase and lecithin:cholesteryl acyltransferase for 9c,12c–18∶2. These results illustrate that incorporation of dietary fatty acids into human plasma lipid classes is selectively controlled and that incorporation of dietary 9c,12c–18∶2 is limited. These results suggest that nutritional benefits of diets high in 9c,12c–18∶2 may be of little value to normal subjects and that the 12c,15t–18∶2 isomer in hydrogenated fat is not a nutritional liability at the present dietary level.  相似文献   

13.
The observation that the subcutaneous fat of pasture-fed Southdown rams consists of two distinct regions is reported. Fatty acid composition of fat from the outer and inner regions of subcutaneous tissue taken from the rib region of eight Southdown rams fed pasture were determined. Relative to the harder inner regions (mean melting point 43.1°C), the softer outer regions (mean melting point 31.8°C) were shown to contain more 9∶0-, 15∶0-, 17∶0-, 17∶1-, 18∶1-cis and total 18∶1 fatty acids; less 14∶0-, 16∶0-, 18∶0- and 18∶1-trans fatty acids; and a greater variety and a greater concentration of branched-chain components. Proportions of medium chain-length fatty acids other than 9∶0, did not differ between the layers. The fatty acid contents of serial samples taken at 1-mm intervals through these tissues were determined. Changes in concentrations of components among samples were gradual through the tissues. There was no clear connective tissue sheet, as has been reported for pigs. The inner region of the tissues contains apparently nonrandom fluctuating changes in fatty acid composition.  相似文献   

14.
Female pigs were fed from three wk of age and up to two years a diet containing partially hydrogenated fish oil (PHFO, 28%trans monoenoic fatty acids), partially hydrogenated soybean oils (PHSBO, 36%trans fatty acids) or lard. No consistent differences were found between PHFO and PHSBO with regard to incorporation oftrans fatty acids in organ lipids, buttrans incorporations were highly organ-specific. Notrans fatty acids were detected in brain phosphatidylethanolamine (PE). The incorporation of monoenoictrans isomers, as a percentage of totalcis + trans, in other organs was highest in subcutaneous adipose tissue and liver mitochondria PE, followed by blood lipids with the lowest level in heart PE. The percentage oftrans isomers compared with that of dietary lipids was consistently lower for 20∶1, compared with 18∶1 in organs from PHFO-fed pigs. The only effect of dietarytrans fatty acids on the fatty acid pattern of brain PE was an increased level of 22∶5n−6. Heart PE and total serum lipids of pigs fed the hydrogenated fats contained higher levels of 18∶2n−6, and these lipids of the PHFO-fed group also contained slightly elevated amounts of 20∶3n−6, 18∶3n−3 and 20∶5n−3. Liver mitochondria PE of the PHFO group also contained higher levels of 20∶3n−6 and 22∶5n−6. Dietarytrans fatty acids caused a consistent decrease of saturated fatty acids compensated by increased levels of monoenes. Thus, it may be concluded that dietary long-chaintrans fatty acids in PHFO behaved similarly metabolically to 18∶1-trans in PHSBO in pigs, without noticeable influence on brain PE composition and with moderate to slight effects on the fatty acid profile of the other organs.  相似文献   

15.
C. -E. Høy  G. Hølmer 《Lipids》1988,23(10):973-980
The influence of the linoleic acid levels of diets containing partially hydrogenated marine, oils (HMO) rich in isomeric 16∶1, 18∶1, 20∶1 and 22∶1 fatty acids on the fatty acid profiles of lipids from rat liver, heart and adipose tissue was examined. Five groups of rats were fed diets containing 20 wt% fat−16% HMO+4% vegetable oils. In these diets, the linoleic acid contents varied between 1.9% and 14.5% of the dietary fatty acids, whereas the contents oftrans fatty acids were 33% in all groups. A sixth group was fed a partially hydrogenated soybean oil (HSOY) diet containing 8% linoleic acid plus 32%trans fatty acids, mainly 18∶1, and a seventh group, 20% palm oil (PALM), with 10% linoleic acid and notrans fatty acids. As the level of linoleic acid in the HMO diets increased from 1.9% to 8.2%, the contents of (n−6) polyunsaturated fatty acids (PUFA) in the phospholipids increased correspondingly. At this dietary level of linoleic acid, a plateau in (n−6) PUFA was reached that was not affected by further increase in dietary 18∶2(n−6) up to 14.5%. Compared with the HSOY- or PALM-fed rats, the plateau value of 20∶4(n−6) were considerably lower and the contents of 18∶2(n−6) higher in liver phosphatidylcholines (PC) and heart PC. Heart phosphatidylethanolamines (PE) on the contrary, had elevated contents of 20∶4(n−6), but decreased 22∶5(n−6) compared with the PALM group. All groups fed HMO had similar contents oftrans fatty acids, mainly 16∶1 and 18∶1, in their phospholipids, irrespective of the dietary 18∶2 levels, and these contents were lower than in the HSOY group. High levels of linoleic acid consistently found in triglycerides of liver, heart and adipose tissue of rats fed HMO indicated that feeding HMO resulted in a reduction of the conversion of linoleic acid into long chain PUFA that could not be overcome by increasing the dietary level of linoleic acid.  相似文献   

16.
Cherian G  Ai W  Goeger MP 《Lipids》2005,40(2):131-136
The effects of feeding CLA to hens on newly hatched chick hepatic and carcass lipid content, liver TAG accumulation, and FA incorporation in chick tissues such as liver, heart, brain, and adipose were studied. These tissues were selected owing to their respective roles in lipid assimilation (liver), as a major oxidation site (heart), as a site enriched with long-chain polyunsaturates for function (brain), and as a storage depot (adipose). Eggs with no, low, or high levels of CLA were produced by feeding hens a corn-soybean meal-basal diet containing 3% (w/w) corn oil (Control), 2.5% corn oil +0.5% CLA oil (CLA1), or 2% corn oil +1.0% CLA oil (CLA2). The egg yolk content of total CLA was 0.0, 1.0, and 2.6% for Control, CLA1, and CLA2, respectively (P<0.05). Maternal dietary CLA resulted in a decrease in chick carcass total fat (P<0.05). Liver tissue of CLA2 chicks had the lowest fat content (P<0.05). The liver TAG content was 8.2, 5.8, and 5.1 mg/g for Control, CLA1, and CLA2 chicks, respectively (P<0.05). The chicks hatched from CLA1 and CLA2 incorporated higher levels of cis-9,trans-11 CLA in the liver, plasma, adipose, and brain than Control (P<0.05). The content of 18∶0 was higher in the liver, plasma adipose, and brain of CLA1 and CLA2 than Control (P<0.05), but no difference was observed in the 18∶0 content of heart tissue. A significant reduction in 18∶1 was observed in the liver, plasma, adipose, heart, and brain of CLA1 and CLA2 chicks (P<0.05). DHA (22∶6n−3) was reduced in the heart and brain of CLA1 and CLA2 chicks (P<0.05). No difference was observed in carcass weight, dry matter, or ash content of chicks (P>0.05). The hatchabilities of fertile eggs were 78, 34, and 38% for Control, CLA1, and CLA2, respectively (P<0.05). The early dead chicks were higher in CLA1 and CLA2 than Control (18 and 32% compared with 9% for Control), and alive but not hatched chicks were 15 and 19% for CLA1 and CLA2, compared with 8% for Control (P<0.05). Maternal supplementation with CLA leads to a reduction in hatchability, liver TAG, and carcass total fat in newly hatched chicks.  相似文献   

17.
Biosynthesis of conjugated linoleic acid in humans   总被引:7,自引:0,他引:7  
Adlof RO  Duval S  Emken EA 《Lipids》2000,35(2):131-135
This paper deals with the reanalysis of serum lipids from previous studies in which deuterated fatty acids were administered to a single person. Samples were reanalyzed to determine if the deuterated fatty acids were converted to deuterium-labeled conjugated linoleic acid (CLA, 9c, 11t-18∶2) or other CLA isomers. We found 11-trans-octadecenoate (fed as the triglyceride) was converted (Δ9 desaturase) to CLA, at a CLA enrichment ofca. 30%. The 11-cis-octadecenoate isomer was also converted to 9c, 11c-18∶2, but at <10% the concentration of the 11t-18∶1 isomer. No evidence (within our limits of detection) for conversion of 10-cis-or 10-trans-octadecenoate to the 10,12-CLA isomers (Δ12 desaturase) was found. No evidence for the conversion of 9-cis, 12-cis-octadecadienoate to CLA (via isomerase enzyme) was found. Although these data come from isomerase enzyme) was found. Although these data come from four single human subject studies, data from some 30 similar human studies have convinced us that the existence of a metabolic pathway in one subject may be extrapolated to the normal adult population.  相似文献   

18.
The American marten (Martes americana) is a boreal forest marten with low body adiposity but high metabolic rate. The study describes the FA composition in white adipose tissue depots of the species and the influence of food deprivation on them. American marten (n=8) were fasted for 2 d with 7 control animals. Fasting resulted in a 13.4% weight loss, while the relative fat mass was >25% lower in the fasted animals. The FA composition of the fat depots of the trunk was quite similar to other previously studied mustelids with 14∶0, 16∶0, 18∶0, 16∶1n−7, 18∶1n−9, and 18∶2n−6 as the most abundant FA. In the extremities, there were higher proportions of monounsaturated FA (MUFA) and PUFA. Food deprivation decreased the proportions of 16∶0 and 16∶1n−7, while the proportion of long-chain MUFA increased in the trunk. The mobilization of FA was selective, as 16∶1n−7, 18∶1n−9, and particular n−3 PUFA were preferentially mobilized. Relative mobilization correlated negatively with the carbon chain length in saturated FA (SFA) and n−9 MUFA. The Δ9 desaturation of SFA enhanced the mobilization of the corresponding MUFA, but the positional isomerism of the first double bond did not correlate consistently with relative mobilization in MUFA or PUFA. In the marten, the FA composition of the extremities was highly resistant to fasting, and the tail tip and the paws contained more long-chain PUFA to prevent the solidification of lipids and to maintain cell membrane fluidity during cooling.  相似文献   

19.
Several years ago, it was established that the Δ15 trans isomer of α-linolenic acid is converted in vivo into fatty acids containing 20 and 22 carbons (geometrical isomers of eicosapentaenoic and docosahexaenoic acids). The present study focused on the in vitro Δ6 desaturation, the first step of the biosynthesis of the n-3 long-chain polyunsaturated fatty acids from 18:3n-3. For that purpose, rat liver microsomes were prepared and incubated with radiolabeled 18∶3 Δ9cis, 12cis, 15cis (18∶3 c,c,c) or 18∶3 Δ9cis, 12cis, 15trans (18∶3c,c,t) under desaturation conditions. The data show that 18∶3c,c,t is converted at a lower rate compared with α-linolenic acid. The product of conversion of 18∶3 c,c,t may be 18∶4 Δ6cis, 9cis, 12cis, 15trans resulting from a Δ6 desaturation of the trans substrate. Moreover, the conversion of radiolabeled 18∶3c,c,t was strongly decreased by the presence of 18∶3c,c,c (up to 48%) while the 18∶3c,c,t only slightly decreased the conversion of radiolabeled 18∶3c,c,c. Thus, the desaturation enzyme presented a higher affinity for the native all-cis n-3 substrate.  相似文献   

20.
J. E. Kinsella  P. H. Yu  J. B. Mai 《Lipids》1979,14(12):1032-1036
Trans, trans-linoleate at 50 and 100% of dietary fat decreased kidney size and altered its composition.Trans, trans-linoleate as the sole source of dietary fat imparied growth and caused more severe symptoms of essential fatty acid deficiency than was observed with hydrogenated coconut oil (HCO). The concentration of renal cholesterol, phospholipids (PL), triglycerides (TG) and cholesteryl esters (CE) were also decreased. Linoleic (18∶2), homo-γ-linolenic acid (20∶3n6) and arachidonic acid (20∶4n6) were significantly depressed in lipid classes, especially in PL and CE, by dietarytrans, trans-linoleate. The increase in eicosatrienoate (20∶3n9), especially in PL and CE of kidneys of rats fed HCO (essential fatty acid deficient), was slight in rats fed 100%trans, trans-linoleate, indicating that thetrans, trans acid probably inhibited acyl elongation and desaturation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号