首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
为了揭示HPS485wf钢动态再结晶组织演变行为,在不同的单道次热压缩变形条件下,进行了该钢动态再结晶过程的CA仿真.结果表明:随着变形温度升高,动态再结晶的孕育期缩短、速度加快,平均晶粒尺寸增加;随着应变速率加快,动态再结晶的孕育期延长、速度减慢,平均晶粒尺寸减小.  相似文献   

2.
以细晶高强IF钢为研究对象,在东北大学轧制技术及连轧自动化国家重点实验室MMS-300热力模拟实验机上,测定了在变形速率为10s^-1,真应变为0.5,变形温度分别为750、800、850、900、950、1000℃时的应力应变曲线。通过实验发现,钢的应力应变曲线为动.态回复型,不随温度而变化;流变应力随着变形温度的增加而下降;通过显微组织观察发现,随变形温度的降低,晶粒变细。  相似文献   

3.
利用Gleeble-3800热模拟试验机对不含稀土和含稀土的4Cr5MoSiV1钢进行高温热变形模拟试验,变形温度为1 100~1 200℃,变形速率为0.1~3 s-1,总变形程度为60%.根据得到的真应力-应变数据,对比试验钢在应变量为30%时的变形抗力值,并分析变形后的显微组织.结果表明:4Cr5MoSiV1钢在研究的试验条件下均发生了动态再结晶;相同变形条件下,含稀土4Cr5MoSiV1钢的变形抗力比不含稀土4Cr5MoSiV1钢增大12~36 MPa;稀土Ce的添加细化了再结晶晶粒,提高了试验钢变形抗力,推迟了动态再结晶的发生.稀土含量为0.012 0%的4Cr5MoSiV1钢适宜的热加工参数为变形温度1 100℃,变形速率0.1 s-1.  相似文献   

4.
利用热模拟设备Gleeble-1500D,对SPCC钢在不同变形量下的真应力-应变曲线进行了测定,并结合微观组织观察,确定了SPCC钢动态再结晶的数学模型,研究并分析了变形参数对动态再结晶晶粒的影响.通过DEFORM有限元软件对SPCC钢的热压缩过程进行模拟计算.分析了不同变形条件对晶粒尺寸的影响.模拟计算结果很好地与实验结果相吻合,为进一步研究这种钢的动态再结晶提供了一定的参考依据.  相似文献   

5.
本文利用Formastor-Press型热模拟试验机,研究了PCrNi_3MoVA钢热变形过程中主要工艺参数对该钢动态再结晶过程中力学行为的影响。建立了试验用钢的动态再结晶临界条件回归方程。求得了发生动态再结晶时的形变热激活能为259kJ/mol,应力指数为4.46。研究了温度补偿应变速率系数Z对热变形流变特性的影响及对流变应力的影响规律,得到了峰值应力σ,与Z之间的关系式。  相似文献   

6.
对316LN钢在Gleeble-1500D热模拟实验机上做高温拉伸实验,试样尺寸为○/10.0 mm×121.5 mm,缺口半径分别为0.5、1.0、2.0、4.0 mm和∞(光滑试样),温度为950℃!1200℃,应变速率为0.5 s-1,得到不同变形条件下试样的断面收缩率变化规律;通过数值模拟,得到开始拉伸时不同缺口拉伸试样最小横截面部位的应力三轴度分布.对比实验与数值模拟结果表明:316LN钢的高温塑性与应力三轴度和晶粒尺寸有关.如果晶粒尺寸相差不明显,应力三轴度起主导作用,应力三轴度越小,断面收缩率越大,塑性越好;如果晶粒尺寸相差明显,晶粒尺寸起主导作用,应力三轴度越小,断面收缩率越小,塑性越差.  相似文献   

7.
利用Gleeble-1500D热模拟试验机对Cr8合金钢在变形温度为900~1200℃、应变速率为0.005~5s~(-1)条件下进行热压缩试验,并对热变形后的试样进行X射线衍射试验,研究了Cr8合金钢的热变形行为及位错密度演变规律。基于试验得到的数据,建立了考虑位错密度演变及包含多参数的两段式本构模型。结果表明:在低应变速率下,Cr8合金钢真应力-真应变曲线具有典型的动态再结晶特征;Cr8合金钢热变形激活能Qact为423.41 kJ/mol,本构模型的计算值与试验值数据吻合较好;在试验条件下,Cr8合金钢的总位错密度均达到10~(14)cm~(-2)以上,总位错密度随应变速率增加、变形温度减小而增加。  相似文献   

8.
利用Gleeble-1500热模拟实验机研究37Mn5钢在变形温度为800~1150℃、变形速率为0.1~10s^-1条件下的热压缩变形行为。采用应变硬化率-应力曲线图较精确地获得峰值应力,并用双曲正弦方程描述37Mn5钢热压缩变形过程中的峰值应力与Zener—Hollomon参数的关系。回归分析得到方程中变形激活能及各材料常数的值,获得37Mn5钢在高温条件下的流变应力本构方程。结果表明,采用该本构方程计算出的流变应力值与实验所得应力值非常接近。  相似文献   

9.
对Al-Cu合金进行高温等温压缩试验,热压缩应变速率为1/s、热变形温度为500~800℃,其热真应力-应变曲线反映了压缩过程中以加工硬化为主,伴随发生了微弱的动态再结晶作用,不存在明显的再结晶峰值点.并利用电子背散射衍射技术分析了该合金不同区域的高温变形及组织特征,结果表明:晶粒尺寸随温度升高缓慢增加,压缩变形主要依靠晶粒变形来完成,动态再结晶形核长大缓慢.各温度下,晶界以小角度晶界为主并逐渐转化为大角度晶界.  相似文献   

10.
在变形温度为533~683K,应变速率为0.001~10s~(-1)条件下,采用热拉伸实验方法测试AZ80镁合金的真实应力-应变曲线,分析应力-应变曲线的变化规律及AZ80镁合金热变形时的微观组织变化规律。结果表明,在一定变形温度条件下,应变速率越高,动态再结晶发生的越充分,再结晶晶粒尺寸越小;在应变速率为0.01s~(-1)时,随着变形温度升高,动态再结晶程度提高;依据Arrhenius本构方程形式,确定适合于AZ80镁合金热变形的本构关系模型,该本构关系模型的相对误差小于18.5%。  相似文献   

11.
The hot deformation behaviors of GCr15 bearing steel were investigated by isothermal compression tests, performed on a Gleeble-3800 thermal-mechanical simulator at temperatures between 950℃ and 1150℃ and strain rates between 0.1 and 10 s^-1. The peak stress and peak strain as functions of processing parameters were obtained. The dependence of peak stress on strain rate and temperature obeys a hyperbolic sine equation with a Zener-Hollomon parameter. By regression analysis, in the temperature range of 950-1 150℃ and strain rate range of 0.1-10 s^-1, the mean activation energy and the stress exponent were determined to be 351kJ/mol and 4.728, respectively. Meanwhile, models of flow stress and dynamic recrystallization (DRX) grain size were also established. The model predictions show good agreement with experimental results.  相似文献   

12.
通过拉伸热模拟试验研究了温度、应变率和晶粒尺寸对Mn18Cr18N高氮奥氏体不锈钢高温塑性的影响。结果表明:在800℃~1 200℃温度范围内,Mn18Cr18N高氮奥氏体不锈钢的塑性随温度升高而升高,1 200℃时达到最好,然后开始下降;应变率通过再结晶的作用而影响塑性;当温度低于1100℃时,细晶粒尺寸材料的塑性优于粗晶粒尺寸,而温度高于1 100℃时中等晶粒尺寸材料塑性最好。  相似文献   

13.
Hot deformation behavior and flow stress model of F40MnV steel   总被引:1,自引:0,他引:1  
Single hit compression tests were performed at 1 223-1 473 K and strain rate of 0.1-10 s-1 to study hot deformation behavior and flow stress model of F40MnV steel. The dependence of the peak stress, initial stress, saturation stress, steady state stress and peak stain on Zener-Hollomon parameter were obtained. The mathematical models of dynamic recrystallization fraction and grain size were also obtained. Based on the tested data, the flow stress model of F40MnV steel was established in dynamic recovery region and dynamic recrystallization region, respectively. The results show that the activation energy for dynamic recrystallization is 278.6 kJ/mol by regression analysis. The flow stress model of F40MnV steel is proved to approximate the tested data and suitable for numerical simulation of hot forging.  相似文献   

14.
20#钢作为冷镦钢线,若出现混晶时,严重影响产品的质量.采用热模拟压缩变形试验的方法,研究了变形温度和变形量对低碳钢奥氏体晶粒形貌的影响.结果表明,变形量对奥氏体晶粒形貌有显著的影响,而变形温度的影响较小;在950℃变形量为30%~50%时混晶现象最严重.为工业生产提供了技术原型.  相似文献   

15.
通过热模拟试验对中温压力容器钢12CrMo连铸坯的高温塑性进行研究。在不同的变形温度下采用10-3s-1的应变速率对试样进行拉伸变形,测量拉伸断口的面缩率,并对拉伸断口的显微组织和析出物进行分析。结果表明,当变形温度高于900℃时,试样在拉伸过程中发生动态再结晶,其面缩率大于85%,表现出优良的高温塑性;当变形温度为850℃时,有大量细小的AlN在12CrMo钢中弥散析出,其尺寸约为10 nm;当变形温度降至800℃时,大量的先共析铁素体沿奥氏体晶界析出,形成网状结构,试样面缩率降至36%,12CrMo钢的高温塑性显著下降。  相似文献   

16.
The hot deformation behavior of an ultralow-carbon microalloyed steel was investigated using an MMS-200 thermal simulation test machine in a temperature range of 1 073-1 373 K and strain rate range of 0.01-10 s~(-1).The results show that the flow stress decreases with increasing deformation temperature or decreasing strain rate.The strain-compensated constitutive model based on the Arrhenius equation for this steel was established using the true stress-strain data obtained from a hot compression test.Furthermore,a new constitutive model based on the Z-parameter was proposed for this steel.The predictive ability of two constitutive models was compared with statistical measures.The results indicate the new constitutive model based on the Z-parameter can more accurately predict the flow stress of an ultralow-carbon microalloyed steel during hot deformation.The dynamic recrystallization (DRX) nucleation mechanism at different deformation temperatures was observed and analyzed by transmission electron microscopy (TEM),and strain-induced grain boundary migration was observed at 1 373 K/0.01 s~(-1).  相似文献   

17.
Influence of hot rolling conditions on the mechanical properties of hot rolled TRIP steel was investigated. Thermomechanical control processing (TMCP) was conducted by using a laboratory hot rolling mill, in which three different kinds of finish rolling temperatures were applied. The results show that polygonal ferrite, granular bainite and larger amount of stabilized retained austenite can be obtained by controlled rolling processes. The finer ferrite grain size is produced through the deformation induced transformation during deformation rather than after deformation, which affects the mechanical properties of hot rolled TRIP steel. Mechanical properties increase with decreasing finish rolling temperature due to the stabilization of retained austenite. Ultimate tensile strength (UTS), total elongation (TEL) and the product of ultimate tensile strength and total elongation (UTS×TEL) reaches optimal values (791 MPa, 36% and 28 476 MPa%, respectively) when the specimen was hot rolled for 50% reduction at finish rolling temperature of 700 ℃.  相似文献   

18.
The superplastic behavior of a commercial duplex stainless steel has been studied by means of isothermal hot tensile testat temperatures of 850-1050℃ for the initial strain rates ranging from 3×l0-4 s-1 to 5X10-2 s-1. At 960℃, the best superplastic de-formation that caused the maximum elongation greater than 840% was obtained for an initial strain rate of 1.2×10-3 s-1. At 850℃, thebest elongation 500% was achieved for an initial strain rate of 2.5×10-3 s-1. During the deformation in higher temperature region,coarse γ grains formed during the prior treatments were broken into spherical particles, resulting in a homogeneous dispersion of γparticles within the δ-ferrite matrix. However, at lower temperatures between 800 and 950℃, the σ phase was formed through theeutectoid decomposition of δ→γ+σ, resulting finally in the stable equiaxed micro-duplex structures with δ/γ and γ/σ, respectively.The precipitation of the σ phase played an important role in improving the superplasticity at 850℃. The strain-rate sensitivity coeffi-cient, m-values, were also determined by the strain rate change tests. The microstructure studies show that the superplastic processoccurs mainly by the local work hardening and the subsequent dynamic recrystallization and a grain boundary sliding and grain switching mechanism.  相似文献   

19.
超高强钢热冲压硬化机理   总被引:1,自引:0,他引:1  
以22MnB5钢为研究对象,分析了超高强钢热冲压成形过程中相变硬化机理。根据热模拟试验结果建立了加热过程奥氏体晶粒尺寸计算模型和变形抗力模型。采用有限元法对材料热冲压同时淬火冷却过程的温度场进行了分析,采用相变动力学模型分析了热成形过程中发生的相变,以及显微组织和力学性能之间的关系。结果表明:形成均匀细小板条马氏体组织的最佳工艺为900~950℃加热5min,超过30℃/s快速淬火并保压8s左右。  相似文献   

20.
The continuous dynamic recrystallization(CDRX) through a progressive transformation of a subgrain structure into a grain structure with the increasing of misorientation occurred in the hot deformation of titanium alloy. A grain size model for CDRX of titanium alloy in hot deformation considering work hardening effect, dynamic softening effect and non-homogeneous deformation effect was established. The β grain size was described as functions of the deformation temperature, strain rate and strain by using the dislocation density as an internal state variable. The inside dislocation storage and dislocation annihilation,which respectively resulted from work hardening effect and dynamic softening effect, were described by the Kocks-Mecking and Picu-Majorell theories correspondingly. The dislocation density rate associated with non-homogeneous deformation effect was done in terms of the Ashby theory. The material constants in the present model were determined via genetic algorithm(GA)-based objective optimization technique. Applying the grain size model to the hot deformation of Ti-5Al-2Sn-2Zr-4Mo-4Cr, the maximum difference between the calculated and experimental β grain size was 8.2%. Moreover, the effect of deformation temperature and strain rate on the β grain size in the hot deformation of Ti-5Al-2Sn-2Zr-4Mo-4Cr was calculated, indicating that the β grain size increased with the increasing of deformation temperature and the decreasing of strain rate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号