首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We report on TEM investigations of the early stages of microstructural evolution during room temperature (T < 100°C) He implantation in Cu. ForcHe ? 0.6 at% clustering of irradiation-induced Frenkel defects leads to the formation of dislocation loops and stacking fault tetrahedra. For 0.6 ? cHe ? 3 at% the microstructure is dominated by a high density of small cavities resulting from the precipitation of the implanted helium. Of particular importance is the observation that two types of vacancy clusters, stacking fault tetrahedra and Hecontaining cavities coexist in this concentration range.  相似文献   

2.
3.
《核技术(英文版)》2016,(6):248-252
Using the stochastic Langevin model coupled with a statistical decay model, we study nuclear dissipation properties at large deformations with excitation energy at scission (E*sc) measured in experiments. It is found that the postsaddle dissipation strength required to fit E*sc data is 12 ×1021 s-1 for 254;256Fm and 6 ×1021 s-1 for 189Au, which has a smaller postsaddle deformation than the former heavy nucleus, showing a rise of nuclear dissipation strength with increasing deformation.  相似文献   

4.
Commercial A533B steels (0.12, 0.16 wt% Cu) irradiated at 290 °C up to 22 mdpa with 5 MeV electrons were examined by hardness measurements, positron lifetime spectroscopy, the coincidence Doppler broadening (CDB) technique and three-dimensional atom probe microanalysis (3DAP). The radiation-induced hardening increased with electron dose and lay on the same trend of neutron-induced hardening within data scatter. CDB measurements revealed that clustering of Cu atoms occurred at doses over 1 mdpa and proceeded with increasing dose. 3DAP results showed that well-defined Cu-rich precipitates with a diameter of less than 2 nm were formed at doses of 10 and 22 mdpa. The precipitates had a shell structure consisting of a Cu–Fe core region and a surrounding Mn–Ni–Si shell, which are similar to those formed under neutron irradiation. The size and number density of the precipitates were consistent with previous neutron data. Positron lifetime spectroscopy showed that no microvoids were formed. The electron irradiation caused almost the same hardening efficiency and evolution of Cu-rich precipitates as those under neutron irradiation on a dpa basis.  相似文献   

5.
介绍了CANDU反应堆压力管的使用条件、压力管寿命与电站寿命的关系、AECL多年来对压力管的改进工作 ,论述了影响压力管使用寿命的因素和秦山三期压力管寿命管理的思路和主要措施  相似文献   

6.
A533B steels irradiated at 290 °C up to 10 mdpa in the Kyoto University Reactor were examined by hardness, positron annihilation and atom probe measurements. Dose dependent irradiation hardening and formation of Cu-rich clusters were confirmed in medium Cu (0.12% and 0.16%Cu) steels whereas neither hardening nor cluster formation was detected in low Cu (0.03%Cu) steel. No microvoids were formed in any of the steels. Post-irradiation annealing in medium Cu steels revealed that the hardening recovery at temperatures above 350-400 °C could be attributed to compositional changes and dissociation of the Cu-rich clusters. Compared to electron irradiation at almost the same dose and dose rate, KUR irradiation caused almost the same hardening and produced Cu-rich clusters, more solute-enriched with larger size and lower density. Considering lower production of freely-migrating vacancies in neutron irradiation, the results suggested that cascades enhance the formation of Cu-rich clusters.  相似文献   

7.
Bent specimens of A533B steel (0.16 wt% Cu) were irradiated at 290 °C to 1 dpa with 6.4 MeV Fe3+ ions. Calculated tensile stresses at the irradiated surface were set to 0, 250, 500 and 750 MPa. The specimens were subjected to hardness measurements, transmission electron microscopy (TEM) observations and three-dimensional atom probe (3DAP) analysis. The radiation-induced hardening decreased with increasing stress to 500 MPa which was near the yield strength. TEM and 3DAP results showed that well-defined dislocation loops and solute clusters were formed. The diameter of dislocation loops increased and the number density decreased when the stress was applied, whereas the diameter and number density of solute clusters decreased. The hardening was mainly attributed to solute cluster formation. Application of tensile stress would control hardening by suppressing the solute cluster nucleation and growth.  相似文献   

8.
A kinetic model was developed to investigate the influence of the displacement rate and helium generation rate on microstructural evolution in austenitic stainless steels. The model integrates the rate equations describing the evolution of point defects, small point defect clusters, helium-vacancy clusters, and the larger cavity size distribution that is responsible for observable swelling. Cavity (bubble) nucleation is accounted for by the helium-vacancy cluster evolution, while void formation occurs when bubbles grow beyond a critical size in the larger cavity distribution.

A series of ion irradiation experiments were used to both calibrate the model and to provide a comparison between model predictions and experimental observations. The experiments involved single and dual-beam irradiations of solution annealed AISI-316 stainless steel at 873 K. The displacement rates were in the range of 2 × 10−3 to 1 × 10−2 dpa/s and the helium-to-dpa ratios were in the range of 0 to 50 appm He/dpa. The maximum displacement dose was 25 dpa. The experiments revealed a significant effect of helium on both the dislocation structure and the cavity distribution. The model predictions of helium effects over a broad range of He/dpa ratios and displacement rates were consistent with experimental observations.  相似文献   


9.
A cold worked 316SS baffle bolt was extracted from the Tihange pressurized water reactor and sectioned at three different positions. The temperature and dose at the 1-mm bolt head position were 593 K and 19.5 dpa respectively, whereas at two shank positions the temperature and dose was 616 K and 12.2 dpa at the 25-mm position and 606 K and 7.5 dpa at the 55-mm position. Microstructural characterization revealed that small faulted dislocation loops and cavities were visible at each position, but the cavities were most prominent at the two shank positions. Measurable swelling exists in the shank portions of this particular bolt, and accompanying this swelling is the retention of very high levels of hydrogen absorbed from the environment. The observation of cavities in the CW 316SS at temperatures and doses relevant to LWR conditions has important implications for pressurized water reactors since SA 304SS plates surround the bolts, a steel that usually swells earlier due to its lower incubation period for swelling.  相似文献   

10.
Iron-ion irradiations were carried out for 0.09wt%Cu A533B steel specimens at 290°C to investigate effects of dose rate change during irradiation; the irradiations consisted of the base irradiation (with an unchanged dose rate) and an additional one with changed dose rates from 1 to 50 times that of the base one. Nano-indentation hardness measurements showed that the increase in hardness was higher for lower dose rate of the base irradiation. A similar trend was identified during the additional irradiation. Transmission electron microscope (TEM) and three-dimensional atom probe (3DAP) analyses were carried out for the quantitative characterization of defect features. Mn/Ni/Si/Cu-enriched clusters and dislocation loops were observed in all specimens. The increase in hardness mainly depended on the formation of the solute atom clusters. The square root of the volume fraction of the solute atom clusters provided a good correlation with the increase in hardness. The effects of dose rate and dose rate change during irradiation were explained by the formation of solute atom clusters.  相似文献   

11.
In order to understand the properties of ion tracks and the microstructural evolution under accumulation of ion tracks in UO2, 100 MeV Zr10+ and 210 MeV Xe14+ ions irradiation examinations have been done at a tandem accelerator facility of JAEA-Tokai, and it has been observed the microstructure by means of a transmission electron microscope (TEM) and a scanning electron microscope (SEM) in CRIEPI.Comparison of the diameter of ion tracks between UO2 and CeO2 under irradiation with 100 MeV Zr10+ and 210 MeV Xe14+ ions at room temperature clarify that the sensitivity on high density electronic excitation of UO2 is much less than that of CeO2. By the cross-sectional observation of UO2 under irradiation with 210 MeV Xe14+ ions at 300 °C, elliptical changes of fabricated pores that exist till ∼6 μm depth and the formation of dislocations have been observed in the ion fluence over 5 × 1014 ions/cm2. The drastic changes of surface morphology and inner structure in UO2 indicate that the overlapping of ion tracks will cause the point defects, enhance the diffusion of point defects and dislocations, and form the sub-grains at relatively low temperature.  相似文献   

12.
NG-CT-10 and NG-CT-20 are newly developed grades of nuclear-grade graphite from China. In this study,their oxidation behaviors were experimentally investigated using thermal gravimetric analysis. Microstructural evolution before and after oxidation was investigated using scanning electron microscope, mercury intrusion, and Raman spectroscopy. The apparent activation energy of NG-CT-10 nuclear graphite is 161.4 k J/mol in a reaction temperature range of 550–700 °C and that of NG-CT-20 is153.5 kJ/mol in a temperature range of 550–650 °C. The activation energy in the inner diffusion control regime is approximately half that in the kinetics control regime. At high temperatures, the binder phase is preferentially oxidized over the filler particles and small pores are generated in the binder. No new large or deep pores are generated on the graphite surfaces. Oxygen can diffuse along the boundaries of filler particles and through the binder phase, but cannot diffuse into the spaces between the nanocrystallites in the filler particles. Filler particles are oxidized starting at their outer surfaces, and the sizes of nanocrystallites do not decrease following oxidation.  相似文献   

13.
Nanometer-sized Cu-enriched solute clusters containing Mn, Ni, and Si atoms are considered as the primary embrittling feature in reactor pressure vessel steels. In order to understand the effects of solute atoms Mn, Ni, and Si on hardening and cluster formation, reactor pressure vessel model alloys FeCu, FeCuSi, FeCuNi, and FeCuNiMn were irradiated at 290 °C in a research reactor. Thermal ageing at 450 °C was also carried out to compare with the results in the neutron irradiation. The addition of Mn resulted in larger hardening and higher cluster number density in both thermal ageing and neutron irradiation. In FeCu0.8NiMn alloy, the size distribution of Cu-enriched clusters formed in 62-h thermal ageing (almost peak hardening) was very similar to that formed in the neutron irradiation, indicating they are on a similar growing stage. But the average Ni and Mn composition in clusters formed in neutron irradiation was higher. A good linear relationship between hardening and the square root of cluster volume fraction for both neutron irradiation and thermal ageing data was found.  相似文献   

14.
Atom probe field ion microscopy (APFIM) investigations of the microstructure of unaged (as-fabricated) and long-term thermally-aged (˜100 000 h at 280°C) surveillance materials from commercial reactor pressure vessel steels were performed. This combination of materials and conditions permitted the investigation of potential thermal aging effects. This microstructural study focused on the quantification of the compositions of the matrix and carbides. The APFIM results indicate that there was no significant microstructural evolution after a long-term thermal exposure in weld, plate and forging materials. The matrix depletion of copper that was observed in weld materials was consistent with the copper concentration in the matrix after the stress relief heat treatment. The composition of cementite carbides aged for 100 000 h were compared to the Thermocalc™ prediction. The APFIM comparisons of materials under these conditions are consistent with the measured change in mechanical properties such as the Charpy transition temperature.  相似文献   

15.
When subcooled water is introduced into a vertical tube in which steam is flowing upward the phenomena of flooding are strongly influenced by the condensation effects. An experimental investigation is reported which has delineated the flow regimes that occur. Flow regime transitions have been identified through analysis and/or dimensionless empirical correlations. A method of analysis has been developed to predict the oscillatory motion of a liquid plug that occurs in certain regions.  相似文献   

16.
We tabulate the atomic masses and nuclear ground-state deformations of 4023 nuclides ranging from 16O to 279112, calculated on the basis of a Yukawa-plus-exponential macroscopic model and a folded-Yukawa microscopic model, with new terms included to account for several previously neglected physical effects. With the values of only five constants determined from a least-squares adjustment to ground-state masses, the resulting root-mean-square error in the calculated ground-state masses of 1323 nuclides ranging from 16O to 259No for which experimental values are known with experimental errors less than 1 MeV is 0.835 MeV.  相似文献   

17.
In this paper the mathematical model of the vibration response of structures to random exciting forces is applied to explore the influence of fluid flow parameters on the dynamic deformations and behaviour of a cylindrical shell. A physical model of the PWR core barrel, considered as a cylindrical shell supported at both ends, is used to demonstrate by numerical experiments the mentioned influence. The mean velocity vector of the fluid flow is the basis for the aero-hydrodynamic excitation expressed by a coherence function of fluctuating surface pressure both in the axial and circumferential directions, stated as the dependence on the values of the correlation lengths. The results of the courses of the generalized spectral loadings, of the ms amplitudes of the displacement and stress distributions are shown at the dependence on the flow parameters.  相似文献   

18.
19.
20.
A YAP(YAlO3:Ce)-scintillating window, coated on its inner surface with an S20-photocathode, seals a cross-focusing hybrid photomultiplier tube (HPMT) equipped with a small p-i-n anode of 2-mm diameter. This new radiation detector separates X-ray lines down to about 2-keV peak energy from the HPMT noise. Its detection efficiency for high gamma energies depends on the YAP-window thickness and amounts to about 18% attenuation at 400-keV energy in the present version. Competitive radiation detectors like Si photodiodes and Si drift chambers are discussed and compared to our prototype, with particular attention given to their energy resolution and noise performance, which limits their active area considerably  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号