首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
We investigated the effects of the glucocorticoids hydrocortisone and dexamethasone on human papillomavirus type 16 (HPV16)-mediated human cell carcinogenesis using normal human keratinocytes (HKc) and HKc immortalized by transfection with HPV16 DNA (HKc/HPV16). Normal HKc did not require glucocorticoids for proliferation. In contrast, growth of early passage HKc/HPV16 strictly required these hormones, although glucocorticoid dependence became less stringent during in vitro progression. Glucocorticoid dependence was acquired by HKc early after immortalization with HPV16 DNA, and glucocorticoids were required for efficient HKc immortalization. However, treatment of HKc/HPV16 with hydrocortisone or dexamethasone did not increase the steady-state levels of HPV16 E6/E7 mRNA or protein. Firefly luciferase activity expressed under the control of the HPV16 upstream regulatory region and P97 promoter increased by about fourfold following dexamethasone treatment of HeLa, but only twofold in HKc/HPV16, and less than twofold in SiHa. However, all of these cell lines expressed sufficient endogenous glucocorticoid receptors to allow for a dexamethasone response of the mouse mammary tumor virus promoter. These results indicate that mechanisms other than a direct influence by glucocorticoids on HPV16 early gene expression may contribute to the striking biological effects of these steroids on HPV16-mediated human cell carcinogenesis.  相似文献   

4.
5.
6.
7.
When cultured on plastic, tumorigenic mouse lung-derived cell lines exhibit different proliferative responses to glucocorticoids; some lines are inhibited while others are stimulated or unaffected. In contrast to the variable dexamethasone responses when cells are cultured on plastic, soft agar colonization by each of these cell lines is enhanced by dexamethasone. Enhanced soft agar growth is unlikely to result from expression of a mutant glucocorticoid receptor, since dexamethasone also enhanced colony formation in two cell lines that stably express a transfected normal glucocorticoid receptor gene. Thus, cell attachment influences the effect of glucocorticoids on cell cycle progression.  相似文献   

8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
Although the therapeutic actions of glucocorticoids are largely attributed to their anti-inflammatory and immunosuppressive effects, they have been implicated in enhancing tissue and cellular protection. In this study, we demonstrate that dexamethasone significantly enhances viability of IEC-18 rat small intestinal cells against oxidant-induced stress in a dose-dependent fashion. This protective action is mediated by induction of hsp72, the major inducible heat shock protein in intestinal epithelial cells. Dexamethasone stimulates a time- and dose-dependent response in hsp72 protein expression that parallels its effects on cell viability. Furthermore, the induction of hsp72 is tissue dependent, as nonintestinal epithelioid HeLa cells show differential induction of hsp72 expression in response to the same dexamethasone treatment. Antisense hsp72 cDNA transfection of IEC-18 cells abolishes the dexamethasone-induced hsp72 response, without significantly affecting constitutive expression of its homologue, hsc73. Dexamethasone treatment also significantly induces hsp72 protein expression in rat intestinal mucosal cells in vivo. These data demonstrate that glucocorticoids protect intestinal epithelial cells against oxidant-induced stress by inducing hsp72.  相似文献   

19.
20.
1. Endogenous synthesis of tetrahydrobiopterin (BH4) is an essential requirement for cytokine-stimulated nitric oxide (NO) synthesis in rat mesangial cells. GTP cyclohydrolase I, the rate-limiting enzyme in BH4 synthesis, is expressed in renal mesangial cells in response to two principal classes of activating signals. These two groups of activators comprise inflammatory cytokines such as interleukin (IL)-1beta and agents that elevate cellular levels of cyclic AMP. 2. We examined the action of the potent anti-inflammatory drug dexamethasone on GTP cyclohydrolase I induction in response to IL-1beta and a membrane-permeable cyclic AMP analogue, N6, O-2'-dibutyryladenosine 3'-5'-phosphate (Bt2cyclic AMP). 3. Nanomolar concentrations of dexamethasone markedly attenuated IL-1beta-induced GTP cyclohydrolase I mRNA steady state level as well as IL-1beta-induced GTP cyclohydrolase I protein expression and enzyme activity. In contrast, dexamethasone did not inhibit Bt2cyclic AMP-triggered increase in GTP cyclohydrolase I mRNA level and protein expression, and low (1 nM) or high (1 and 10 microM) doses of dexamethasone consistently increased Bt2cyclic AMP-induced GTP cyclohydrolase activity. 4. In summary, these results suggest that glucocorticoids act at several levels, critically dependent on the stimulus used, to control GTP cyclohydrolase I expression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号