首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
During embryo implantation, apoptosis is observed morphologically at the implantation site of endometrium. The objectives of this study were to demonstrate biochemical evidence of apoptosis and quantitative assessment of DNA fragmentation in uterine epithelial cells using a mouse implantation model, and to investigate the autocrine/paracrine regulation of apoptosis in uterine epithelial cells during blastocyst outgrowth. Blastocysts from day 4 pregnant mice were cultured on uterine epithelial cells for 96 h. Uterine epithelial cells dislodged by trophoblasts in endometrium-trophoblast unit demonstrated morphological features of apoptosis by Acridine Orange staining. Electrophoresis demonstrated DNA ladder and DNA fragmentation by enzyme-linked immunosorbent assay markedly increased after 48 h period of incubation. Apoptosis increased in an exponential way in accordance with trophoblast outgrowth. In addition, DNA fragmentation was shown in the epithelial cells by adding embryo-conditioned medium (CM) and the effect of embryo CM on apoptosis was significantly inhibited by anti-transforming growth factor (TGF)-beta antibody. Delayed outgrowth was observed after 48 h of incubation in the blastocysts cultured with anti-TGF-beta antibody. These results suggest there is autocrine/paracrine regulation of apoptosis in uterine epithelial cells at mouse embryo implantation and that TGF-beta might play an important role in the occurrence of apoptosis in the endometrium-trophoblast unit.  相似文献   

2.
BACKGROUND: Apoptosis has been identified after ischemia-reperfusion (IR) injury to the brain, heart, kidney, retina, and the adrenals. Intestinal IR injury causes villous and crypt damage, which has so far been attributed to cellular necrosis. This study was undertaken to investigate the possible role of apoptosis after reperfusion of cold-stored small bowel grafts in syngeneic rats. METHODS: Small intestinal grafts were stored at 4 degrees C for 24 hr in saline (n=6) or in modified University of Wisconsin solution (n=6), followed by reperfusion for 1 hr in syngeneic Lewis rats. Small bowel samples were obtained before storage, after preservation and after 1 hr of reperfusion. They were processed for light and electron microscopy and analyzed for cell death, with particular emphasis on apoptosis. RESULTS: Less than one apoptotic event was seen per 10 crypts in normal and stored bowels. An occasional normal and some denuded villous epithelial cells of stored bowels exhibited apoptosis. After isotransplantation and 1 hr of reperfusion, marked increase in apoptosis was seen in the crypts and denuded villous epithelial cells of both saline- and modified University of Wisconsin-stored bowels. Secondary necrosis was seen in apoptotic cells, as were dark cells. Only a few cells showed signs of primary ischemic necrosis. CONCLUSIONS: Apoptosis occurs after intestinal IR injury. Modulation of its genetic regulatory and biochemical effector machinery might alleviate or even prevent IR injury in small bowel transplanted after similar periods of storage.  相似文献   

3.
Tyrosine kinase inhibitor, erbstatin, induced morphological apoptosis and DNA fragmentation in human small cell lung carcinoma (SCLC) cells. Erbstatin-induced apoptosis was inhibited by antioxidants, whereas erbstatin-inhibited tyrosine phosphorylation was not affected by them. Erbstatin was shown by means of flow cytometry to induce hydrogen peroxide generation. Furthermore, hydrogen peroxide induced morphological apoptosis and DNA fragmentation in the SCLC cells. We also demonstrated that erbstatin-induced hydrogen peroxide production and DNA fragmentation were partially suppressed by inhibition of protein synthesis. Thus, erbstatin-induced apoptosis would be due to hydrogen peroxide generation via newly synthesized protein.  相似文献   

4.
BACKGROUND: Renal warm ischaemia-reperfusion injury is pertinent to vascular and transplant surgery. While established models provide functional and morphological data the authors wanted to be able to correlate this with the underlying pathophysiology at any chosen time point, thus allowing future interventional effects on reperfusion injury to be evaluated. METHODS: In a rodent model bilateral renal warm ischaemia (15-60 min) and then reperfusion (20 or 80 min) before nephrectomy allowed for analysis of early reperfusion pathophysiology. The remaining kidney provided functional data (glomerular filtration rate (GFR)) at days 2 and 7 before nephrectomy for late analysis and morphology using a new grading system. RESULTS: Acceptable survival rate (ten of 12 animals) was seen with up to 45 min of warm ischaemia. Renal function was impaired at day 2 following 30-60 min of warm ischaemia (P< 0.01) and day 7 in the 45- and 60-min groups (P < 0.05 and P < 0.01 respectively). Strong correlation existed between duration of ischaemia and GFR at day 2 (r2=0.88) and day 7 (r2=0.95). Histological damage in the cortical tubules was evident in the 45- and 60-min groups (P< 0.01). CONCLUSION: This new model allowed comparative functional, morphological and pathophysiological studies while minimizing the number of animals required. Overall 45 min of warm ischaemia gave significant, recoverable injury and is recommended for investigating renal reperfusion injury.  相似文献   

5.
BACKGROUND: Myocardial ischemia and reperfusion (MI/R)-induced tissue injury involves necrosis and apoptosis. However, the precise contribution of apoptosis to cell death, as well as the mechanism of apoptosis induction, has not been delineated. In this study, we sought to define the contribution of the activated terminal complement components to apoptosis and necrosis in a rat model of MI/R injury. METHODS AND RESULTS: Monoclonal antibodies (mAbs; 18A and 16C) raised against the rat C5 complement component bound to purified rat C5 (ELISA). 18A effectively blocked C5b-9-mediated cell lysis and C5a-induced chemotaxis of rat polymorphonuclear leukocytes (PMNs), whereas 16C had no complement inhibitor activity. A single dose (20 mg/kg i.v.) of 18A blocked >80% of serum hemolytic activity for >4 hours. Administration of 18A before myocardial ischemia (30 minutes) and reperfusion (4 hours) significantly reduced (91%) left ventricular free wall PMN infiltration compared with 16C treatment. Treatment with 18A 1 hour before ischemia or 5 minutes before reperfusion significantly reduced infarct size compared with 16C treatment. A significant reduction in infarct size (42%) was also observed in 18A-treated rats after 30 minutes of ischemia and 7 days of reperfusion. DNA ladders and DNA labeling (eg, TUNEL assay) demonstrated a dramatic reduction in MI/R-induced apoptosis in 18A-treated compared with 16C-treated rats. CONCLUSIONS: Anti-C5 therapy in the setting of MI/R significantly inhibits cell apoptosis, necrosis, and PMN infiltration in the rat despite C3 deposition. We conclude that the terminal complement components C5a and C5b-9 are key mediators of tissue injury in MI/R.  相似文献   

6.
Apoptosis is a genetically regulated form of cell death. Individual cells show condensed nuclear chromatin and cytoplasm, and biochemical analysis reveals fragmentation of the DNA. Ensuing cellular components, apoptotic bodies, are removed by macrophages or neighboring cells. Genes involved in the regulation of apoptosis as well as stimuli and signal transduction systems, are only beginning to be understood in the retina. Therefore, we developed a new in vivo model system for the investigation of events leading to apoptosis in the retina and the pigment epithelium. We induced apoptosis in retinal photoreceptors and the pigment epithelium of albino rats by exposure to 3000 lux of diffuse, cool white fluorescent light for short time periods of up to 120 minutes. Animals were killed at different time intervals during and after light exposure. The eyes were enucleated and the lower central retina was processed for light- and electron microscopy. DNA fragmentation was analysed in situ by TdT-mediated dUTP nick-end labeling (TUNEL) or by gel electrophoresis of total retinal DNA. We observed that the timing of apoptosis in the photoreceptors and pigment epithelium was remarkably different, the pigment epithelium showing a distinct delay of several hours before the onset of apoptosis. In photoreceptors, apoptosis was induced within 90 minutes of light exposure, with the morphological appearance of apoptosis preceding the fragmentation of DNA. In the pigment epithelium, the morphological appearance of apoptosis and DNA fragmentation were coincident. Different regulative mechanisms may lead to apoptotic cell death in the retinal photoreceptors and pigment epithelium. This in vivo model system will allow measurement of dose-responses, a potential spectral dependence and the molecular background of apoptotic mechanisms in the retina.  相似文献   

7.
Recent evidence suggests that oxygen-derived free radicals are involved in mediating gastric microvascular and parenchymal cell injuries induced by ischaemia and reperfusion. Therefore, the effect of the locally acting anti-ulcer drug, sucralfate, was studied on ischaemia and reperfusion (e.g. induced gastric lesions, intraluminal bleeding, changes in vascular permeability and non-protein sulfhydryl levels in the rat stomach). Allopurinol was used as a known standard antioxidant drug. Rats were subjected to 30 min of gastric ischaemia in the presence of 100 mmol/L hydrochloric acid and reperfusion periods of 15, 30 or 60 min duration. The gastric lesions were assessed microscopically under an inverted microscope. The vascular permeability was quantified by measuring the extravasated Evans blue in the stomach. There were significantly greater numbers of gastric lesions, intraluminal bleeding and leakage of Evans blue during all reperfusion periods as compared with those of ischaemia, with maximum effects occurring at 60 min following reperfusion. Pretreatment with sucralfate (31.25-250 mg/kg, p.o.) or allopurinol (12.5-50 mg/kg, i.p.) 30 min before the procedure, dose-dependently reduced the gastric lesions, intraluminal bleeding, and decreased the vascular permeability induced by ischaemia and reperfusion. Furthermore, sucralfate dose-dependently reverses the ischaemia and reperfusion-induced depletion of mucosal non-protein sulfhydryl levels and inhibited the superoxide radical production in both cell-free xanthine-xanthine oxidase and in the stimulated polymorphonuclear cellular systems. These results suggest that the protection produced by sucralfate against gastric injury may be due to its antioxidant effects.  相似文献   

8.
Involvement of ceramide signaling in the initiation of apoptosis induction in myocardial cells by in vitro and in vivo ischemia and reperfusion was analyzed. Synthetic cell permeable C2-ceramide induced apoptotic death of rat neonatal cardiomyocytes in vitro. In vitro ischemia (oxygen/serum/glucose deprivation) led to a progressive accumulation of ceramide in cardiomyocytes. After 16 hours of simulated in vitro reperfusion (readdition of oxygen, serum and glucose), the level of ceramide in surviving cells was found to have returned to baseline, whereas, levels in nonadherent dead cells remained high. In the rat heart left coronary artery occlusion model, ischemia with the subsequent reperfusion, but not ischemia alone, induced apoptosis in myocardial cells as demonstrated by DNA electrophoresis and measurement of soluble chromatin degradation products. The content of ceramide in ischemic area was elevated to 155% baseline levels at 30 minutes, and to 330% after 210 minutes of ischemia. Ischemia (30 minutes) followed by reperfusion (180 minutes) increased the ceramide level to 250% in the ischemic area. The combination of results obtained in both in vitro and animal models demonstrate for the first time that ceramide signaling can be involved in ischemia/reperfusion death of myocardial cells.  相似文献   

9.
Apoptosis is a mode of active cell death. We have examined whether 2-chloroethylethyl sulfide (CEES), a sulfur vesicating agent, triggers apoptosis as a cytotoxic mechanism. Incubation of thymocytes with CEES, resulted in an induction of apoptotic features of cell death. Treatment of cells with 100 microM CEES for 5 h increased DNA fragmentation to approximately 40% of control. The fragmentation of DNA was visualized by agarose gel electrophoresis. It showed ladder pattern of DNA fragmentation, which indicates internucleosomal cleavage of DNA. Further evidence of apoptosis was observed in morphological changes of nuclei by using the terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling (TUNEL) method. The percentage of TUNEL positive cells was dependent upon CEES concentrations. CEES induced the classical morphological features of apoptosis in nucleus. These features were accompanied by condensation of chromatin, which arranged in sharply declined clumps and fragmentation of nucleus. To study requirement for synthesis of new protein in CEES-induced apoptosis, we studied the effect of cycloheximide for apoptotic activity. This protein synthesis inhibitor did not suppress the CEES-induced apoptotic activity. Taken together, these results suggest that CEES-induced apoptosis as a cytotoxicmechanism and this process occurs independent of synthesis of new protein.  相似文献   

10.
BACKGROUND: Oral indomethacin causes villous shortening, microvascular damage, and distortion, which might induce mucosal ischaemia and necrosis. AIMS: In order to determine the early events in indomethacin induced jejunal injury we examined the temporal relations between morphological damage and changes in villous blood flow following indomethacin. METHODS: In anaesthetised rats, mid jejunal villi were exteriorised in a chamber and observed by fluorescence microscopy. Blood flow in surface capillaries was calculated from velocities and diameters. Indomethacin was applied by both luminal and intravenous routes for 90 minutes, after which the animal was perfusion fixed and the villi were processed for histological examination. Control animals received intravenous or luminal bicarbonate (1.25%). RESULTS: Blood flow slowed in individual villi at 20 minutes, and progressed to complete stasis (in another group) by 45 minutes. Histological examination at 20 minutes revealed microvascular distortion, but no villous shortening; crypt depth:villous height ratios were 0.356 (0.02) in test and 0.386 (0.01) in surrounding villi (p > 0.05). At stasis, the villi under study showed epithelial clumping and were shortened: crypt depth:villous height ratios were 0.92 (0.2) in test and 0.42 (0.06) in surrounding villi (p < 0.02). Vehicle alone had no effect on either blood flow or histology. CONCLUSIONS: Focal slowing of villous blood flow and microvascular distortion precede villus shortening and epithelial disruption, and indicate that damage to surface microvasculature is an early event in indomethacin induced mucosal injury in this model.  相似文献   

11.
BACKGROUND: It has been suggested that bowel permeability is altered following abdominal aortic aneurysm surgery. The effect of ischaemia-reperfusion injury to the lower limb on the morphological structure, neutrophil infiltration and permeability of the bowel was investigated. METHODS: Histological assessment of the bowel was undertaken in five groups of Wistar rats: control, 3 h of bilateral hind limb ischaemia and 3 h of bilateral hind limb ischaemia followed by 1, 2 or 3 h of reperfusion. Using an everted gut sac model and 14C-labelled polyethylene glycol, the effect of ischaemia-reperfusion on small bowel permeability was studied. RESULTS: The small bowel showed a significant decrease in mucosal thickness, villus height and crypt depth in animals subjected to ischaemia followed by 2-hr reperfusion (mean(s.e.m.) 420(15), 217(9) and 163(6) microns respectively) compared with controls (481(11), 245(6) and 195(6) microns) (P < 0.05). Neutrophil count within the lamina propria was similar in the different groups. A significant increase in mean(s.e.m.) 14C-labelled polyethylene glycol translocation was detected in animals subjected to ischaemia-reperfusion compared with controls (760(40) versus 560(27) c.p.m. per ml per h) (P < 0.05). CONCLUSION: These data suggest that reperfusion of acutely ischaemic extremities produces structural and functional changes in the small intestine, although these changes are not associated with increased neutrophil infiltration within the bowel wall.  相似文献   

12.
BACKGROUND: Mesangial cells (MC) are known to secrete various vasoactive substances that may control endothelial and epithelial cell growth. Therefore, the cell-cell interactions among these cells may be important in the control of renal function. However, the exact mechanisms of maintaining the cell-cell interactions are not yet understood. We have focused on the role of hepatocyte growth factor (HGF) in the regulation of cell-cell interactions, since HGF has many protective functions in the kidney. To investigate the role of HGF in renal injury, we examined (1) the effects of HGF on epithelial injury induced by serum deprivation, and (2) the role of local HGF production in the maintenance of renal structure. METHODS: Apoptotic changes in epithelial cells were assessed by nuclear morphology and DNA fragmentation assay. Transfection of human HGF vector into epithelial cells was performed by a highly efficient viral-liposome method. The effects of secreted HGF on the growth of renal cells were examined using a co-culture system. RESULTS: The addition of recombinant HGF (rHGF) stimulated the growth of rat and porcine epithelial cells. Moreover, the decrease in number of epithelial cells by serum deprivation was significantly attenuated by rHGF. Interestingly, apoptotic changes in epithelial cells induced by serum deprivation were also significantly attenuated by rHGF (P < 0.01). As a model of gene therapy, the effects of overexpression of human HGF gene in epithelial cells on apoptosis induced by serum deprivation were examined. Transfection of human HGF vector into epithelial cells also attenuated epithelial cell death induced by serum deprivation through the inhibition of apoptosis, accompanied by increased HGF production (P < 0.01). In addition, HGF also prevented endothelial injury induced by tumor necrosis factor-alpha and dexamethasone. Given the presence of a local HGF system, we measured local HGF secreted from renal cells. Immunoreactive HGF was observed in the conditioned medium of MC, but not epithelial cells, while the specific receptor of HGF, c-met, was expressed in epithelial cells. Of importance, co-culture of MC with epithelial cells resulted in a significant increase in number of epithelial cells, which was significantly abolished by neutralizing anti-HGF antibody. CONCLUSIONS: Overall, these results demonstrate that local production of HGF in MC may maintain the growth of epithelial and endothelial cells through its anti-apoptotic action.  相似文献   

13.
This paper deals with the apoptotic effect exerted in human retinoblastoma Y79 cells by a number of compounds. A remarkable effect was observed after treatment with DNA-damaging agents, such as camptothecin, etoposide, cisplatin and carboplatin; camptothecin was found to be the most efficacious. Treatment with these compounds induced the appearance of morphological features of apoptosis in the cells together with the distinct fragmentation of DNA, as shown by agarose gel electrophoresis. These effects were also accompanied by a remarkable increase in the level of p53. Many other compounds, which are not DNA-damaging agents, induced the morphological features of apoptosis but none of them were capable of increasing the level of p53. Among these compounds, Taxol, suramin and sodium butyrate also stimulated the oligonucleosomal fragmentation of DNA, while C2-ceramide, a cell-permeable analogue of ceramide, and vitamin D3 were not effective in the induction of DNA laddering in Y79 cells. Apoptosis was dependent on macromolecular synthesis with all the compounds tested.  相似文献   

14.
The mode and the kinetics of differentiation and death of murine N1E115 neuroblastoma cells induced by dimethyl sulfoxide and other nonspecific factors in vitro were investigated. After morphological differentiation neuroblastoma cells die by apoptosis which is indicated by characteristic morphological features and by internucleosomal DNA fragmentation. Durations of both differentiation and apoptosis are dependent on the nature of stimuli used. Protein synthesis inhibitor cycloheximide does not prevent differentiation and apoptosis of neuroblastoma cells induced by dimethyl sulfoxide and even accelerates both processes. The relationship between cell death and differentiation is discussed.  相似文献   

15.
16.
Histologic, electron microscopic, and immunohistochemical studies were made to analyze the structural features and the cellular composition of the pulmonary lesions produced in rats by the administration of interleukin-2 (IL-2). This agent induced pulmonary edema; thickening of alveolar septa; damage to endothelial cells in capillaries and venules, marked interstitial infiltration by cytotoxic T lymphocytes, lymphokine-activated killer (LAK) cells, macrophages, and dendritic cells (as demonstrated by cell counting in preparations stained immunohistochemically with peroxidase- and fluorochrome-labeled antibodies); and injury to bronchiolar and alveolar epithelial cells. Granular and agranular lymphocytes often were closely apposed to endothelial cells in capillaries and venules. Contacts between lymphocytes and type II alveolar epithelial cells also were observed. Damaged type II alveolar epithelial cells showed nuclear and cytoplasmic features that are considered indicative of apoptosis (confirmed by nick end labeling). Phagocytosis of apoptotic bodies by macrophages was occasionally found. These results support the concept that IL-2 induces cytotoxic vascular and parenchymal cell damage that is mediated by LAK cells and cytotoxic T lymphocytes, which make contacts with endothelial cells and type II alveolar epithelial cells. This damage appears to be exacerbated by the secondary release of a variety of vasoactive agents and inflammatory mediators.  相似文献   

17.
Studies were carried out to investigate the protective effects of pyruvate, a key glycolytic intermediate and alpha-keto-monocarboxylate, against oxidative stress-induced apoptosis. Oxidative stress was induced by treating mouse thymocytes with 25 microM hydrogen peroxide for 15 min at 37 degrees C under 5% CO2 in air. Pre- and post-treatment of cells with 10 mM pyruvate inhibited morphological changes, internucleosomal DNA fragmentation, and translocation of phosphatidylserine to the plasma membrane surface, which are characteristic features of apoptosis. L-lactate (10 mM) and acetate (10 mM) were ineffective in inhibiting apoptosis and appeared to be toxic to the cells under similar conditions. The results suggest that pyruvate has therapeutic potential for use in the treatment of oxidative stress-induced disorders associated with increased apoptosis.  相似文献   

18.
PURPOSE: To study whether cell type-specific death occurs in retinal ischemia-reperfusion injury and the possible roles of p16INK4 in the determination of cell death. METHODS: Retinal ischemia-reperfusion injury was induced in rats by a ligation method. After 1 hour of ischemia and a time of reperfusion that varied, rat eyes were enucleated. Cell death in the retina was studied by the TdT-dUTP terminal nick-end labeling method and propidium iodide (PI) staining. Electron microscopic observation of the retina was also performed. Immunohistochemical studies using antibodies against syntaxin and calbindin were performed to detect amacrine cells and horizontal cells, respectively, and immunohistochemical studies using an antibody against p16INK4 were performed to study whether this cell cycle-related protein was expressed in dying cells. RESULTS: Most of the calbindin-positive horizontal cells in the outer aspect of the inner nuclear layer (INL) showed morphologic features of necrosis. In contrast, syntaxin-positive amacrine cells in the inner aspect of the INL showed features of apoptosis. Of 320 calbindin-positive horizontal cells, only 11 (3.4%) showed positive PI staining. Those calbindin-positive, horizontal cells were p16INK4 positive. In contrast, 746 of 910 (82.0%) syntaxin-positive amacrine cells showed condensed PI staining, and none were p16INK4 positive. CONCLUSIONS: Expression of p16INK4 may regulate the fate of retinal neurons in ischemia-reperfusion injury, and cell type-specific death thus occurs in the retina after such injury.  相似文献   

19.
20.
BACKGROUND & AIMS: Calpain proteases have been implicated in cell death by necrosis and more recently by apoptosis. Experiments were designed to determine the role of calpain proteases in ischemic rat liver injury by measurement of cytosolic calpain activity after different periods of ischemia-reperfusion and by evaluation of the effects of calpain inhibition on tissue injury and animal survival. METHODS: Calpain activity was measured in the cytosol using Suc-Leu-Leu-Val-Try-7 amino-4 methyl coumarin, a specific fluorogenic substrate, and Cbz-Leu-Leu-Tyr-CHN2, a specific inhibitor. RESULTS: Calpain activity increased significantly with the duration of ischemia-reperfusion and was inhibited more than 80% by the inhibitor. Calpain inhibition resulted in a significant decrease in transaminase release and tissue necrosis and converted nonsurvival ischemic conditions to survival conditions. When the in situ terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate-digoxigenin nick-end labeling assay for apoptosis was used, 35% +/- 6% of nonparenchymal cells and 16% +/- 3% of hepatocytes stained positively after 60 minutes of ischemia and 6 hours of reperfusion. In contrast, animals pretreated with the calpain inhibitor showed minimal evidence of apoptosis. This was further substantiated by gel electrophoresis assay for DNA fragmentation and by electron-microscopic evaluation. CONCLUSIONS: These data suggest that calpain proteases play a pivotal role in warm ischemia-reperfusion injury of the rat liver through modulation of apoptosis and necrosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号