首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Three-dimensional (3-D) imaging of fluorescence resonance energy transfer (FRET) in human cells under two-photon excitation was demonstrated in this study. A sample was prepared by expressing a donor and an acceptor in living cells and using an antibody to secure the proximity of contact between the donor and the acceptor. The quenching of fluorescence emission of a donor in the double-labelled cells indicates the presence of FRET that occurred in these living cells. Because of the quadratic relation of the excitation power, 3-D localisation of FRET becomes possible.  相似文献   

2.
We present a novel, multi‐dimensional, time‐correlated single photon counting (TCSPC) technique to perform fluorescence lifetime imaging with a laser‐scanning microscope operated at a pixel dwell‐time in the microsecond range. The unsurpassed temporal accuracy of this approach combined with a high detection efficiency was applied to measure the fluorescent lifetimes of enhanced cyan fluorescent protein (ECFP) in isolation and in tandem with EYFP (enhanced yellow fluorescent protein). This technique enables multi‐exponential decay analysis in a scanning microscope with high intrinsic time resolution, accuracy and counting efficiency, particularly at the low excitation levels required to maintain cell viability and avoid photobleaching. Using a construct encoding the two fluorescent proteins separated by a fixed‐distance amino acid spacer, we were able to measure the fluorescence resonance energy transfer (FRET) efficiency determined by the interchromophore distance. These data revealed that ECFP exhibits complex exponential fluorescence decays under both FRET and non‐FRET conditions, as previously reported. Two approaches to calculate the distance between donor and acceptor from the lifetime delivered values within a 10% error range. To confirm that this method can be used also to quantify intermolecular FRET, we labelled cultured neurones with the styryl dye FM1‐43, quantified the fluorescence lifetime, then quenched its fluorescence using FM4‐64, an efficient energy acceptor for FM1‐43 emission. These experiments confirmed directly for the first time that FRET occurs between these two chromophores, characterized the lifetimes of these probes, determined the interchromophore distance in the plasma membrane and provided high‐resolution two‐dimensional images of lifetime distributions in living neurones.  相似文献   

3.
We report a highly specific, sensitive, and robust method for analyzing fluorescence resonance energy transfer (FRET) based on spectral laser scanning confocal microscopy imaging. The lambda FRET (lambdaFRET) algorithm comprises imaging of a FRET sample at multiple emission wavelengths rendering a FRET spectrum, which is separated into its donor and acceptor components to obtain a pixel-based calculation of FRET efficiency. The method uses a novel off-line precalibration procedure for spectral bleed-through correction based on the acquisition of reference reflection images, which simplifies the method and reduces variability. LambdaFRET method was validated using structurally characterized FRET standards with variable linker lengths and stoichiometries designed for this purpose. LambdaFRET performed better than other well-established methods, such as acceptor photobleaching and sensitized emission-based methods, in terms of specificity, reproducibility, and sensitivity to distance variations. Moreover, lambdaFRET analysis was unaffected by high fluorochrome spectral overlap and cellular autofluorescence. The lambdaFRET method demonstrated outstanding performance in intra- and intermolecular FRET analysis in both fixed and live cell imaging studies.  相似文献   

4.
Fluorescence resonance energy transfer (FRET) between excited fluorescent donor and acceptor molecules occurs via the Förster mechanism over a range of 1–10 nm. Because of the strong (sixth power) distance dependence of the signal, FRET has been used to assess the proximity of molecules in biological systems. We used a scanning near-field optical microscope (SNOM) operated in the shared-aperture mode using uncoated glass fibre tips to detect FRET between dye molecules embedded in polyvinyl alcohol films and bound to cell surfaces. FRET was detected by selective photobleaching of donor and acceptor fluorophores. We also present preliminary results on pixel-by-pixel energy transfer efficiency measurements using SNOM.  相似文献   

5.
A spectrograph with continuous wavelength resolution has been integrated into a frequency‐domain fluorescence lifetime‐resolved imaging microscope (FLIM). The spectral information assists in the separation of multiple lifetime components, and helps resolve signal cross‐talking that can interfere with an accurate analysis of multiple lifetime processes. This extends the number of different dyes that can be measured simultaneously in a FLIM measurement. Spectrally resolved FLIM (spectral‐FLIM) also provides a means to measure more accurately the lifetime of a dim fluorescence component (as low as 2% of the total intensity) in the presence of another fluorescence component with a much higher intensity. A more reliable separation of the donor and acceptor fluorescence signals are possible for Förster resonance energy transfer (FRET) measurements; this allows more accurate determinations of both donor and acceptor lifetimes. By combining the polar plot analysis with spectral‐FLIM data, the spectral dispersion of the acceptor signal can be used to derive the donor lifetime – and thereby the FRET efficiency – without iterative fitting. The lifetime relation between the donor and acceptor, in conjunction with spectral dispersion, is also used to separate the FRET pair signals from the donor alone signal. This method can be applied further to quantify the signals from separate FRET pairs, and provide information on the dynamics of the FRET pair between different states.  相似文献   

6.
Förster resonance energy transfer (FRET) probes being used to improve the resolution of stimulated emission depletion (STED) microscopy are numerically discussed. Besides the FRET efficiency and the excitation intensity, the fluorescence lifetimes of donor and acceptor are found to be another key parameter for the resolution enhancement. Using samples of FRET pairs with shorter donor lifetime and longer acceptor lifetime enhances the nonlinearity of the donor fluorescence, which leads to an increased resolution. The numerical simulation shows that a double resolution improvement of STED microscopy can be achieved by using Cy3–Atto647N samples when compared with that of using standard Cy3‐only samples.  相似文献   

7.
Fluorescence resonance energy transfer (FRET) between excited fluorescent donor and acceptor molecules occurs via the F?rster mechanism over a range of 1-10 nm. Because of the strong (sixth power) distance dependence of the signal, FRET has been used to assess the proximity of molecules in biological systems. We used a scanning near-field optical microscope (SNOM) operated in the shared-aperture mode using uncoated glass fibre tips to detect FRET between dye molecules embedded in polyvinyl alcohol films and bound to cell surfaces. FRET was detected by selective photobleaching of donor and acceptor fluorophores. We also present preliminary results on pixel-by-pixel energy transfer efficiency measurements using SNOM.  相似文献   

8.
9.
Quantification of fluorescence resonance energy transfer (FRET) needs at least two external samples, an acceptor‐only reference and a linked FRET reference, to calibrate fluorescence signal. Furthermore, all measurements for references and FRET samples must be performed under the same instrumental conditions. Based on a novel notion to predetermine the molar extinction coefficient ratio (RC) of acceptor‐to‐donor for the correction of acceptor excitation crosstalk, we present here a robust and independent emission‐spectral unmixing FRET methodology, Iem‐spFRET, which can simultaneously measure the E and RC of FRET sample without any external references, such that Iem‐spFRET circumvents the rigorous restriction of keeping the same imaging conditions for all FRET experiments and thus can be used for the direct measurement of FRET sample. We validate Iem‐spFRET by measuring the absolute E and RC values of standard constructs with different acceptor‐to‐donor stoichiometry expressed in living cells. Our results demonstrate that Iem‐spFRET is a simple and powerful tool for real‐time monitoring the dynamic intermolecular interaction within single living cells.  相似文献   

10.
Two-photon excitation fluorescence resonance energy transfer (2P-FRET) imaging microscopy can provide details of specific protein molecule interactions inside living cells. Fluorophore molecules used for 2P-FRET imaging have characteristic absorption and emission spectra that introduce spectral cross-talk (bleed-through) in the FRET signal that should be removed in the 2P-FRET images, to establish that FRET has actually occurred and to have a basis for distance estimations. These contaminations in the FRET signal can be corrected using a mathematical algorithm to extract the true FRET signal. Another approach is 2P-FRET fluorescence lifetime imaging (FLIM). This methodology allows studying the dynamic behavior of protein-protein interactions in living cells and tissues. 2P-FRET-FLIM was used to study the dimerization of the CAATT/enhancer binding protein alpha (C/EBPalpha). Results show that the reduction in donor lifetime in the presence of acceptor reveals the dimerization of the protein molecules and also determines more precisely the distance between the donor and acceptor. We describe the development and characterization of the 2P-FRET-FLIM imaging system with the Bio-Rad Radiance2100 confocal/multiphoton microscopy system.  相似文献   

11.
When and where proteins associate with each other in living cells are key questions in many biological research projects. One way to address these questions is to measure the extent of F?rster resonance energy transfer (FRET) between proteins that have been labeled with appropriate donor and acceptor fluorophores. When both proteins interact, donor and acceptor fluorophores are brought into close vicinity so that the donor can transmit a part of its excitation energy to the acceptor. As a result, both the intensity and the lifetime of the donor fluorescence decrease, whereas the intensity of the acceptor emission increases. This offers different approaches to determine FRET efficiency: One is to detect changes in the intensity of donor and acceptor emission, the other is to measure changes in the lifetime of the donor molecule. One important advantage of the fluorescence lifetime approach is that it allows to distinguish between free and associated donor molecules. However, like intensity measurements it lacks an intrinsic control ensuring that changes in the measured parameters are only due to FRET and not other quenching processes. Here, we show how this limitation can be overcome by spectrally resolved fluorescence lifetime measurements in the time domain. One technique is based on a streak camera system, the other technique is based on a time-correlated-single-photon-counting approach. Both approaches allow biologists to record both donor and acceptor fluorescence emitted by the sample in a single measurement.  相似文献   

12.
One manifestation of fluorescence resonance energy transfer (FRET) is an increase in donor fluorescence after photobleaching the acceptor. Published acceptor‐photobleaching methods for FRET have mainly used wide‐field microscopy. A laser scanning confocal microscope enables faster and targeted bleaching within the field of view, thereby improving speed and accuracy. Here we demonstrate the approach with CFP and YFP, the most versatile fluorescent markers now available for FRET. CFP/YFP FRET imaging has been accomplished with a single laser (argon) available on virtually all laser‐scanning confocal microscopes. Accordingly, we also describe the conditions that we developed for dual imaging of CFP and YFP with the 458 and 514 argon lines. We detect FRET in a CFP/YFP fusion and also between signalling molecules (TNF‐Receptor‐Associated‐Factors or TRAFs) that are known to homo‐ and heterotrimerize. Importantly, we demonstrate that appropriate controls are essential to avoid false positives in FRET by acceptor photobleaching. We use two types of negative control: (a) an internal negative control (non‐bleached areas of the cell) and (b) cells with donor in the absence of the acceptor (CFP only). We find that both types of negative control can yield false FRET. Given this false FRET background, we describe a method for distinguishing true positive signals. In summary, we extensively characterize a simple approach to FRET that should be adaptable to most laser‐scanning confocal microscopes, and demonstrate its feasibility for detecting FRET between several CFP/YFP partners.  相似文献   

13.
We present a method and an apparatus of polarized fluorescence resonance energy transfer (FRET) and anisotropy imaging microscopy done in parallel for improved interpretation of the photophysical interactions. We demonstrate this apparatus to better determine the protein-protein interactions in the pleckstrin homology domain and the conformational changes in the Parathyroid Hormone Receptor, a G-protein coupled receptor, both fused to the cyan and yellow fluorescent proteins for either inter- or intramolecular FRET. In both cases, the expression levels of proteins and also background autofluorescence played a significant role in the depolarization values measured in association with FRET. The system has the sensitivity and low-noise capability of single-fluorophore detection. Using counting procedures from single-molecule methods, control experiments were performed to determine number densities of green fluorescence protein variants CFP and YFP where homo resonance energy transfer can occur. Depolarization values were also determined for flavins, a common molecule of cellular background autofluorescence. From the anisotropy measurements of donor and acceptor, the latter when directly excited or when excited by energy transfer, we find that our instrumentation and method also characterizes crucial effects from homotransfer, polarization specific photobleaching and background molecules.  相似文献   

14.
Fluorescence resonance energy transfer (FRET) by acceptor photobleaching is a simple but effective tool for measurements of protein–protein interactions. Until recently, it has been restricted to qualitative or relative assessments owing to the spectral bleed‐through contamination resulting from fluorescence overlap between the donor and the acceptor. In this paper, we report a quantitative algorithm that combines the spectral unmixing technique with FRET by acceptor photobleaching. By spectrally unmixing the emissions before and after photobleaching, it is possible to resolve the spectral bleed‐through and retrieve the FRET efficiency/interaction distance quantitatively. Using a human keratinocyte cell line transfected with cyan fluorescent protein (CFP)‐ and yellow fluorescent protein (YFP)‐tagged Cx26 connexins as an example, FRET information at homotypic gap junctions is measured and compared with well‐established methods. Results indicate that the new approach is sensitive, flexible, instrument independent and solely FRET dependent. It can achieve FRET estimations similar to that from a sensitized emission FRET method. This approach has a great advantage in providing the relative concentrations of the donor and the acceptor; this is, for example, very important in the comparative study of cell populations with variable expression levels.  相似文献   

15.
To study protein–protein interactions by fluorescence energy transfer (FRET), the proteins of interest are tagged with either a donor or an acceptor fluorophore. For efficient FRET, fluorophores need to have a reasonable overlap of donor emission and acceptor excitation spectra. However, given the relatively small Stokes shift of conventional fluorescent proteins, donor and acceptor pairs with high FRET efficiencies have emission spectra that are difficult to separate. GFP and YFP are widely used in fluorescence microscopy studies. The spectral qualities of GFP and YFP make them one of the most efficient FRET donor–acceptor couples available. However, the emission peaks of GFP (510 nm) and YFP (527 nm) are spectrally too close for separation by conventional fluorescence microscopy. Difficulties in simultaneous detection of GFP and YFP with a fluorescence microscope are eliminated when spectral imaging and subsequent linear unmixing are applied. This allows FRET microscopy using these tags to study protein–protein interactions. We adapted the linear unmixing procedure from commercially available software (Zeiss) for use with acceptor photobleaching FRET using GFP and YFP as FRET pair. FRET efficiencies up to 52% for a GFP-YFP fusion protein were measured. To investigate the applicability of the procedure, we used two constituents of the nucleotide excision repair system, which removes UV-induced single-strand DNA damage. ERCC1 and XPF form a heterodimeric 5' endonuclease in nucleotide excision repair. FRET between ERCC1-GFP and XPF-YFP occurs with an efficiency of 30%.  相似文献   

16.
Local fluorescence probes based on CdSe semiconductor nanocrystals were prepared and tested by recording scanning near‐field optical microscopy (SNOM) images of calibration samples and fluorescence resonance energy transfer SNOM (FRET SNOM) images of acceptor dye molecules inhomogeneously deposited onto a glass substrate. Thousands of nanocrystals contribute to the signal when this probe is used as a local fluorescence source while only tens of those (the most apical) are involved in imaging for the FRET SNOM operation mode. The dip‐coating method used to make the probe enables diminishing the number of active fluorescent nanocrystals easily. Prospects to realize FRET SNOM based on a single fluorescence centre using such an approach are briefly described.  相似文献   

17.
Fluorescence lifetime imaging (FLIM) uses the fact that the fluorescence lifetime of a fluorophore depends on its molecular environment but not on its concentration. Molecular effects in a sample can therefore be investigated independently of the variable, and usually unknown concentration of the fluorophore. There is a variety of technical solutions of lifetime imaging in microscopy. The technical part of this paper focuses on time‐domain FLIM by multidimensional time‐correlated single photon counting, time‐domain FLIM by gated image intensifiers, frequency‐domain FLIM by gain‐modulated image intensifiers, and frequency‐domain FLIM by gain‐modulated photomultipliers. The application part describes the most frequent FLIM applications: Measurement of molecular environment parameters, protein‐interaction measurements by Förster resonance energy transfer (FRET), and measurements of the metabolic state of cells and tissue via their autofluorescence. Measurements of local environment parameters are based on lifetime changes induced by fluorescence quenching or conformation changes of the fluorophores. The advantage over intensity‐based measurements is that no special ratiometric fluorophores are needed. Therefore, a much wider selection of fluorescence markers can be used, and a wider range of cell parameters is accessible. FLIM‐FRET measures the change in the decay function of the FRET donor on interaction with an acceptor. FLIM‐based FRET measurement does not have to cope with problems like donor bleedthrough or directly excited acceptor fluorescence. This relaxes the requirements to the absorption and emission spectra of the donors and acceptors used. Moreover, FLIM‐FRET measurements are able to distinguish interacting and noninteracting fractions of the donor, and thus obtain independent information about distances and interacting and noninteracting protein fractions. This is information not accessible by steady‐state FRET techniques. Autofluorescence FLIM exploits changes in the decay parameters of endogenous fluorophores with the metabolic state of the cells or the tissue. By resolving changes in the binding, conformation, and composition of biologically relevant compounds FLIM delivers information not accessible by steady‐state fluorescence techniques.  相似文献   

18.
We present a high resolution electrical conductivity imaging technique based on the principles of eddy current and atomic force microscopy (AFM). An electromagnetic coil is used to generate eddy currents in an electrically conducting material. The eddy currents generated in the conducting sample are detected and measured with a magnetic tip attached to a flexible cantilever of an AFM. The eddy current generation and its interaction with the magnetic tip cantilever are theoretically modeled using monopole approximation. The model is used to estimate the eddy current force between the magnetic tip and the electrically conducting sample. The theoretical model is also used to choose a magnetic tip-cantilever system with appropriate magnetic field and spring constant to facilitate the design of a high resolution electrical conductivity imaging system. The force between the tip and the sample due to eddy currents is measured as a function of the separation distance and compared to the model in a single crystal copper. Images of electrical conductivity variations in a polycrystalline dual phase titanium alloy (Ti-6Al-4V) sample are obtained by scanning the magnetic tip-cantilever held at a standoff distance from the sample surface. The contrast in the image is explained based on the electrical conductivity and eddy current force between the magnetic tip and the sample. The spatial resolution of the eddy current imaging system is determined by imaging carbon nanofibers in a polymer matrix. The advantages, limitations, and applications of the technique are discussed.  相似文献   

19.
In the last decade, fluorescence resonance energy transfer (FRET) has become a useful technique for studying intermolecular interactions applied to the analysis of biological systems. Although FRET measurements may be very helpful in the comprehension of different cellular processes, it can be difficult to obtain quantitative results, hence the necessity of studying FRET on controllable systems. Here, a fuzzy nanostructured system called a nanocapsule is presented as a nanometric-device allowing distance modulation, thus preserving photophysical properties of fluorescent dyes and exhibiting good potential features for improving quantitative FRET analysis. We evaluated the behavior of such a sample using four FRET methods (three of them based on steady-state fluorescence and one using lifetime measurements). Within some limitations that can be overcome, these nanodevices have the potential to serve as a benchmark system for characterizing new FRET couples and to develop quantitative approaches for FRET analysis.  相似文献   

20.
Ratiometric quantification of CFP/YFP FRET enables live-cell time-series detection of molecular interactions, without the need for acceptor photobleaching or specialized equipment for determining fluorescence lifetime. Although popular in widefield applications, its implementation on a confocal microscope, which would enable sub-cellular resolution, has met with limited success. Here, we characterize sources of optical variability (unique to the confocal context) that diminish the accuracy and reproducibility of ratiometric FRET determination and devise practical remedies. Remarkably, we find that the most popular configuration, which pairs an oil objective with a small pinhole aperture, results in intractable variability that could not be adequately corrected through any calibration procedure. By quantitatively comparing several imaging configurations and calibration procedures, we find that significant improvements can be achieved by combining a water objective and increased pinhole aperture with a uniform-dye calibration procedure. The combination of these methods permitted remarkably consistent quantification of sub-cellular FRET in live cells. Notably, this methodology can be readily implemented on a standard confocal instrument, and the dye calibration procedure yields a time savings over traditional live-cell calibration methods. In all, identification of key technical challenges and practical compensating solutions promise robust sub-cellular ratiometric FRET imaging under confocal microscopy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号