首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Escherichia coli has only a single copy of a gene for tRNA6Leu (Y. Komine et al., J. Mol. Biol. 212:579-598, 1990). The anticodon of this tRNA is CAA (the wobble position C is modified to O2-methylcytidine), and it recognizes the codon UUG. Since UUG is also recognized by tRNA4Leu, which has UAA (the wobble position U is modified to 5-carboxymethylaminomethyl-O2-methyluridine) as its anticodon, tRNA6Leu is not essential for protein synthesis. The BT63 strain has a mutation in the anticodon of tRNA6Leu with a change from CAA to CUA, which results in the amber suppressor activity of this strain (supP, Su+6). We isolated 18 temperature-sensitive (ts) mutants of the BT63 strain whose temperature sensitivity was complemented by introduction of the wild-type gene for tRNA6Leu. These tRNA6Leu-requiring mutants were classified into two groups. The 10 group I mutants had a mutation in the miaA gene, whose product is involved in a modification of tRNAs that stabilizes codon-anticodon interactions. Overexpression of the gene for tRNA4Leu restored the growth of group I mutants at 42 degrees C. Replacement of the CUG codon with UUG reduced the efficiency of translation in group I mutants. These results suggest that unmodified tRNA4Leu poorly recognizes the UUG codon at 42 degreesC and that the wild-type tRNA6Leu is required for translation in order to maintain cell viability. The mutations in the six group II mutants were complemented by introduction of the gidA gene, which may be involved in cell division. The reduced efficiency of translation caused by replacement of the CUG codon with UUG was also observed in group II mutants. The mechanism of requirement for tRNA6Leu remains to be investigated.  相似文献   

2.
3.
4.
5.
A gel shift assay that distinguishes the aminoacylated form from the deacylated form of tRNAs was used to study the requirements for aminoacylation of Escherichia coli tRNA(Asn) in vivo. tRNA(Asn) derivatives containing single base changes in their anticodons or discriminator bases were constructed, and the extent of in vivo aminoacylation was determined directly. Substitution of U35 with C35 or U36 with C36 abolished aminoacylation of the tRNA. Substitution of G34 with C34 converted tRNA(Asn) into a lysine acceptor. Thus, each of the anticodon nucleotides are important for aminoacylation of tRNA(Asn). Substitution of discriminator base G73 with A73 affected the extent of aminoacylation in vivo indicating that the discriminator base also contributes to aminoacylation of tRNA(Asn).  相似文献   

6.
Minor leucine tRNA species, tRNA(Leu)4 and tRNA(Leu)5, from Escherichia coli B have been reported to recognize leucine codons UUA and UUG [Goldman, E., Holmes, W. M., and Hatfield, G. W. (1979) J. Mol. Biol. 129, 567-585]. In the present study, these two tRNA(Leu) species were purified from E. coli A19, and the nucleotide sequences were determined by a post-labeling method. tRNA(Leu)5 was found to correspond to the tRNA gene reported as su degrees6 tRNA [Yoshimura, M., Inokuchi, H., and Ozeki, H. (1984) J. Mol. Biol. 177, 627-644]. The first letter of the anticodon was identified to be 2'-O-methylcytidine (Cm). tRNA(Leu)4 was identified as the minor leucine tRNA that has been sequenced previously (tRNA(Leu)UUR) [Yamaizumi, Z., Kuchino, Y., Harada, F., Nishimura, S., and McCloskey, J. A. (1980) J. Biol. Chem. 255, 2220-2225]. There was an unidentified modified nucleoside (N*) in the first position of the anticodon of tRNA(Leu)4. Nucleoside N* was isolated to homogeneity (1 A260 unit). By 1H NMR spectroscopy, nucleoside N was found to be a 2'-O-methyluridine derivative with a substituent having a -CH2NH2+CH2COO- moiety in position 5 of the uracil ring. On the basis of these NMR analyses together with mass spectrometry, the chemical structure of nucleoside N* was determined as 5-carboxymethylaminomethyl-2'-O-methyluridine (cmnm5Um). Nucleoside N* was thus found to be a novel type of naturally occurring modified uridine. Because of the conformational rigidity of Cm and cmnm5Um in the first position of the anticodon, these tRNA(Leu) species recognize the leucine codons UUA++ and UUG correctly, but never recognize the phenylalanine codons UUU and UUC.  相似文献   

7.
Enterotoxigenic Escherichia coli (ETEC) strains expressing only coli surface antigen 6 (CS6) have previously been isolated from patients with diarrhea, but the immunogenicity of CS6 has not been established in humans. We have detected CS6-specific immunoglobulin A responses in the feces and blood of patients convalescing from natural ETEC disease and of volunteers given an oral ETEC vaccine.  相似文献   

8.
9.
The nucleocapsid (N) protein of the Toscana (TOS) virus was expressed in Escherichia coli by using a pET15b vector. The recombinant protein was purified by affinity chromatography and was characterized by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, immunoblotting, and enzyme immunoassay (EIA). The recombinant antigen was reactive with positive human sera, and the reactivity correlated very well (r = 0.9) with that of a whole-virus antigen when tested by EIA with 30 TOS virus-positive and 30 TOS virus-negative serum samples. The results demonstrate that the recombinant N protein can be easily produced in a procaryotic system and used for diagnostic assays for TOS virus immunity.  相似文献   

10.
After ovulation in salmonids, the eggs are held in the peritoneal cavity and bathed in coelomic fluid. Using a chromogenic peptide substrate, the anti-protease activity of brook trout coelomic fluid was measured. Trypsin, chymotrypsin, and pancreatic elastase activities were significantly inhibited by coelomic fluid containing 5.0, 10.0, and 25.0 microgram of total protein, respectively. Using subtractive cDNA cloning, we have previously characterized a set of ovarian proteins called TOPs (trout ovulatory proteins) that are secreted into the coelomic fluid after ovulation. TOPs are most homologous to mammalian antileukoprotease, a heat- and acid-stable serine protease inhibitor. On the basis of this homology, we hypothesized that the anti-trypsin activity observed in the coelomic fluid was related to the presence of TOPs. In the present study, this hypothesis was supported by the acid- and heat-stability of the anti-trypsin activity present in coelomic fluid. Coelomic fluid could be heated to 50 degrees C or treated at a pH less than 5.2 without a significant decrease in the inhibitory activity. Further, coelomic fluid from which TOPs were immunoprecipitated had significantly less anti-trypsin activity than nonimmunoprecipitated controls. We propose that TOP proteins are uniquely produced by the ovary and secreted into the coelomic fluid to act as protease inhibitors following ovulation.  相似文献   

11.
High-level expression of soluble recombinant human hemoglobin (rHb) in Escherichia coli was obtained with several hemoglobin variants. Under identical conditions, two rHbs containing the Presbyterian mutation (Asn-108-->Lys) in beta-globin accumulated to approximately twofold less soluble globin than rHbs containing the corresponding wild-type beta-globin subunit accumulated. The beta-globin Providence(asp) mutation (Lys-82-->Asp) significantly improved soluble rHb accumulation compared to the wild-type beta-globin subunit and restored soluble accumulation of rHbs containing the Presbyterian mutation to wild-type levels. The Providenceasp substitution introduced a negatively charged residue into the normally cationic 2,3-bisphosphoglycerate binding pocket, potentially reducing the electrostatic repulsion in the absence of the polyanion. The average soluble globin accumulation when there was coexpression of di-alpha-globin and beta-Lys-82-->Asp-globin (rHb9.1) and heme was present in at least a threefold molar excess was 36% +/- 3% of the soluble cell protein in E. coli. The average total accumulation (soluble globin plus insoluble globin) was 56% +/- 7% of the soluble cell protein. Fermentations yielded 6.0 +/- 0. 3 g of soluble rHb9.1 per liter 16 h after induction and 6.4 +/- 0.2 g/liter 24 h after induction. The average total globin yield was 9.4 g/liter 16 h after induction. High-level accumulation of soluble rHb in E. coli depends on culture conditions, the protein sequence, and the molar ratio of the heme cofactor added.  相似文献   

12.
Prokaryotes have three amino acid-specific class II tRNAs that possess a characteristic long variable arm, tRNASer, tRNALeuand tRNATyr, while eukaryotes have only two, tRNASerand tRNALeu. Because of such a phylogenetic divergence in the composition of tRNA, the class II tRNA system is a good candidate for studying how the tRNA recognition manner has evolved in association with the evolution of tRNA. We report here a cross-species aminoacylation study of the class II tRNAs, showing the unilateral aminoacylation specificity between Escherichia coli and a yeast, Saccharomyces cerevisiae. Both SerRS and LeuRS from E.coli were unable to aminoacylate yeast class II tRNAs; in contrast, the yeast counterparts were able to aminoacylate E.coli class II tRNAs. Yeast seryl-tRNA synthetase was able to aminoacylate not only E.coli tRNASerbut also tRNALeuand tRNATyr, and yeast LeuRS was able to aminoacylate not only E.coli tRNALeubut also tRNATyr. These results indicate that the recognition manner of class II tRNA, especially the discrimination strategy of each aminoacyl-tRNA synthetase against noncognate class II tRNAs, is significantly divergent between E.coli and yeast. This difference is thought to be due mainly to the different composition of class II tRNAs in E.coli and yeast.  相似文献   

13.
5-Methylaminomethyluridine (mnm5U) exists in the first position of the anticodon (position 34) of Escherichia coli tRNA4Arg for codons AGA/AGG. In the present study, the temperature dependence of the ribose-puckering equilibrium of pmnm5U was analyzed by proton NMR spectroscopy. Thus, the enthalpy difference (delta H) between the C2'-endo and C3'-endo forms was obtained at 0.65 kcal.mol-1. By comparison of the delta H values of pU and pmnm5U, the 5-substitution was found to increase the relative stability of the C3'-endo form over the C2'-endo form significantly (by 0.56 kcal.mol-1). Furthermore, this conformational "rigidity" was concluded to depend on the 5'-phosphate group, because nucleoside U exhibits only a negligible change in the ribose-puckering equilibrium upon the 5-methylaminomethyl substitution. Further NMR analyses and molecular dynamics calculations revealed that interactions between the 5-methylaminomethyl and 5'-phosphate groups of pmnm5U restrict the conformation about the glycosidic bond to a low anti form, enhancing steric repulsion between the 2-carbonyl and 2'-hydroxyl groups in the C2'-endo form. This intrinsic conformational rigidity of the mnm5U residue in position 34 may contribute to the correct codon recognition.  相似文献   

14.
15.
tRNA splicing in the yeast Saccharomyces cerevisiae requires an endonuclease to excise the intron, tRNA ligase to join the tRNA half-molecules, and 2'-phosphotransferase to transfer the splice junction 2'-phosphate from ligated tRNA to NAD, producing ADP ribose 1"-2" cyclic phosphate (Appr>p). We show here that functional 2'-phosphotransferases are found throughout eukaryotes, occurring in two widely divergent yeasts (Candida albicans and Schizosaccharomyces pombe), a plant (Arabidopsis thaliana), and mammals (Mus musculus); this finding is consistent with a role for the enzyme, acting in concert with ligase, to splice tRNA or other RNA molecules. Surprisingly, functional 2'-phosphotransferase is found also in the bacterium Escherichia coli, which does not have any known introns of this class, and does not appear to have a ligase that generates junctions with a 2'-phosphate. Analysis of the database shows that likely members of the 2'-phosphotransferase family are found also in one other bacterium (Pseudomonas aeruginosa) and two archaeal species (Archaeoglobus fulgidus and Pyrococcus horikoshii). Phylogenetic analysis reveals no evidence for recent horizontal transfer of the 2'-phosphotransferase into Eubacteria, suggesting that the 2'-phosphotransferase has been present there since close to the time that the three kingdoms diverged. Although 2'-phosphotransferase is not present in all Eubacteria, and a gene disruption experiment demonstrates that the protein is not essential in E. coli, the continued presence of 2'-phosphotransferase in Eubacteria over large evolutionary times argues for an important role for the protein.  相似文献   

16.
The specific formylation of initiator methionyl-tRNA by methionyl-tRNA formyltransferase (MTF) is important for initiation of protein synthesis in Escherichia coli. In attempts to identify regions of MTF that come close to the 3'-end of the tRNA, we oxidized 32P-3'-end-labeled E. coli initiator methionine tRNA with sodium metaperiodate and cross-linked it to MTF. The cross-linked MTF was separated from uncross-linked MTF by DEAE-cellulose chromatography, and the tRNA in the cross-linked MTF was hydrolyzed with nuclease P1 and RNase T1, leaving behind an oxidized fragment of [32P]AMP attached to MTF. Trypsin digestion of the cross-linked MTF followed by high pressure liquid chromatography of the digest yielded two peaks of radioactive peptides, I* and II*. These peptides were characterized by N- and/or C-terminal sequencing and by matrix-assisted laser desorption ionization mass spectroscopy. Peptide I* contained amino acids Gln186-Lys210 with Lys207 as the site of the cross-link. Peptide II*, a partial digestion product, contained amino acids Gln186-Arg214 also with Lys207 as the site of the cross-link. The molecular masses of peptides I* and II* indicate that the final product of the cross-linking reaction between the periodate-oxidized AMP moiety of the tRNA and Lys207 is most likely a morpholino derivative rather than a reduced Schiff's base.  相似文献   

17.
18.
Site-directed N-ethylmaleimide labeling was studied with Glu-126 and/or Arg-144 mutants in lactose permease containing a single, native Cys residue at position 148 in the substrate-binding site. Replacement of either Glu-126 or Arg-144 with Ala markedly decreases Cys-148 reactivity, whereas interchanging the residues, double-Ala replacement, or replacement of Arg-144 with Lys or His does not alter reactivity, indicating that Glu-126 and Arg-144 are charge-paired. Importantly, although alkylation of Cys-148 is blocked by ligand in wild-type permease, no protection whatsoever is observed with any of the Glu-126 or Arg-144 mutants. Site-directed fluorescence with 2-(4-maleimidoanilino)-naphthalene-6-sulfonic acid (MIANS) in mutant Val-331 --> Cys was also studied. In marked contrast to Val-331 --> Cys permease, ligand does not alter MIANS reactivity in mutant Glu-126 --> Ala/Val-331 --> Cys, Arg-144 --> Ala/Val-331 --> Cys, or Arg-144 --> Lys/Val-331 --> Cys and does not cause either quenching or a shift in the emission maximum of the MIANS-labeled mutants. However, mutation Glu-126 --> Ala or Arg-144 --> Ala and, to a lesser extent, Arg-144 --> Lys cause a red-shift in the emission spectrum and render the fluorophore more accessible to I-. The results demonstrate that Glu-126 and Arg-144 are irreplaceable for substrate binding and suggest a model for the substrate-binding site in the permease. In addition, the findings are consistent with the notion that alterations in the substrate translocation pathway at the interface between helices IV and V are transmitted conformationally to the H+ translocation pathway at the interface between helices IX and X.  相似文献   

19.
A plasmid expression vector, pINSAT2, was constructed in order to express spermidine/spermine N1-acetyltransferase (SSAT) in Escherichia coli. Cells transfected with this vector produced large amounts of SSAT, amounting to up to 2% of the soluble protein when isopropyl beta-D-thiogalactopyranoside (IPTG) was added and 0.3% of the soluble protein in the absence of inducer. The growth rate of cells expressing SSAT was reduced, and all of the cellular spermidine was converted to N1-acetylspermidine, much of which was excreted. Putrescine and 1-methylspermidine, which is not a substrate for SSAT, could reverse the effects of SSAT expression on growth, but spermidine was only effective when the amount of SSAT expression was limited by omitting the IPTG inducer. The lack of stimulation of growth by spermidine correlated with its complete conversion to N1-acetylspermidine. These results show that N1-acetylspermine is not able to substitute for the unmodified polyamines in supporting growth and suggest that acetylation is a physiological response to convert excess polyamines to a physiologically inert form which is readily excreted. Cells expressing large amounts of SSAT were much more sensitive to the growth inhibitory action of the antitumor agent N1,N12-bis(ethyl)spermine, supporting the hypothesis that the ability of such bis(ethyl) polyamines to induce SSAT contributes to their antiproliferative actions. SSAT was readily purified to homogeneity from extracts of DH5 alpha cells containing pINSAT2. The purified enzyme had a similar specific activity and Km values for spermine and spermidine as the enzyme purified from human colon cancer cells, suggesting that posttranslational modifications specific to eukaryotes are not needed for enzymatic activity.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
The specific formylation of initiator methionyl-tRNA by methionyl-tRNA formyltransferase (MTF; EC 2.1.2.9) is important for the initiation of protein synthesis in eubacteria and in eukaryotic organelles. The determinants for formylation in the tRNA are clustered mostly in the acceptor stem. As part of studies on the molecular mechanism of recognition of the initiator tRNA by MTF, we report here on the isolation and characterization of suppressor mutations in Escherichia coli MTF, which compensate for the formylation defect of a mutant initiator tRNA, lacking a critical determinant in the acceptor stem. We show that the suppressor mutant in MTF has a glycine-41 to arginine change within a 16-amino acid insertion found in MTF from many sources. A mutant with glycine-41 changed to lysine also acts as a suppressor, whereas mutants with changes to aspartic acid, glutamine, and leucine do not. The kinetic parameters of the purified wild-type and mutant Arg-41 and Lys-41 enzymes, determined by using the wild-type and mutant tRNAs as substrates, show that the Arg-41 and Lys-41 mutant enzymes compensate specifically for the strong negative effect of the acceptor stem mutation on formylation. These and other considerations suggest that the 16-amino acid insertion in MTF plays an important role in the specific recognition of the determinants for formylation in the acceptor stem of the initiator tRNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号