首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
In this paper, a simple method to obtain the equivalent radiation emitting sources of an electronic circuit using the near-field scanning method is presented. The model is based on a set of elemental dipoles that substitutes the electronic circuit and radiates the same magnetic field. Two different approaches are presented: a set of electric dipoles and a set of magnetic dipoles. In order to build the model, both the magnitude and phase of the magnetic field are required. These measurements are carried out using the "near-field scanning method," and two procedures are presented: using the vector network analyzer and the spectrum analyzer. Finally, the model is applied to two different cases: to obtain the radiated near-field of a component (microcontroller) and to obtain the field of a complete electronic board.  相似文献   

2.
The problem of near-field to far-field transformation of narrow-band incoherent electromagnetic fields is analyzed. The coherence matrix of signals sampled in the time domain on a surface enclosing incoherent sources is derived. Two equivalent formulations based on the processing of the coherence matrix are introduced: The signal subspace analysis and the bimodal transformation. In the signal-subspace approach, the coherence matrix is processed using a method based on singular value decomposition, giving rise to a set of functions on the surface enclosing the incoherent sources. Each of these functions is individually transformed to the far field via a modal decomposition and the sum of the transformed functions gives the total far field. In the second formulation, the bimodal transformation is used to transform the near field coherence matrix into the far field coherence matrix from which the far-field pattern is derived. The applications of the proposed transformations in the presence of noise are illustrated. A numerical example using incoherent radiating dipoles inside a leaking wire-grid enclosure validates the two formulations of near-field to far-field transformation. The proposed methodology gives the mathematical foundation for designing a compact time domain measurement facility well suited to incoherent electromagnetic radiation.  相似文献   

3.
Airborne or spaceborne radar systems often require tests before deployment to verify how well the system detects targets and suppresses clutter and jammer signals. The radar antenna diameter can be large and thus the conventional far-field test distance is impractical to implement. The theory and simulations of phase-focused near-field testing for adaptive phased array antennas is discussed. With near-field source deployment, standard phased-array near-field phase focusing provides far-field adaptive nulling equivalent performance at a range distance of one aperture diameter from the adaptive antenna under test. Both main beam clutter sources and sidelobe jammer sources are addressed. The phased array antenna elements analyzed are one-half wavelength dipoles over the ground plane. Bandwidth, polarization, array mutual coupling, and finite array edge effects are taken into account. Numerical simulations of an adaptive antenna that has multiple displaced phase centers indicate that near-field and far-field testing can be equivalent  相似文献   

4.
This work presents a near-field to far-field (NF-FF) transformation for antenna and scatterer radiation evaluation. The transformation allows practical computation by making use of a sampling surface in the near-field that is spheroidal in shape: namely a prolate or oblate spheroid. The resulting vector wave equation does not support orthogonal vector solutions in spheroidal coordinates and instead rectangular field components are solved for using the scalar wave equation in spheroidal coordinates. The new transformation only requires knowledge of the completely-specified near-field electric field along the spheroidal transformation surface and does not need any information associated with the corresponding magnetic field. The benefit of using a spheroidal near-field geometry is its ability to closely conform to both linear and planar radiating structures while still permitting evaluation of the full far-field radiation pattern. Our approach makes use of an eigenfunction expansion of spheroidal wave-harmonics to develop two distinct, yet closely related, NF-FF transformation algorithms for each type of spheroidal surface. The spheroidal NF-FF transformation is validated and performance assessed using a well-characterized radiation structure. By applying the prolate and oblate algorithms to a radiating structure with known analytical near- and far-field electric fields, viz., a filament dipole with sinusoidal current distribution, we are able to setup and conduct multiple numerical tests that serve as a proof-of-concept for the spheroidal NF-FF transformation.  相似文献   

5.
A theory for analyzing the behavior of adaptive phased array antennas illuminated by a near-field interference test source is presented. Conventional phased array near-field focusing is used to produce an equivalent far-field antenna pattern at a range distance of one to two aperture diameters from the adaptive antenna under test. The antenna is assumed to be a linear array of isotropic receive elements. The interferer is assumed to be a bandlimited noise source radiating from an isotropic antenna. The theory is developed for both partially and fully adaptive arrays. Results are presented for the fully adaptive array case with single and multiple interferers. The results indicate that near-field and far-field adaptive nulling can be equivalent. The adaptive nulling characteristics studied in detail are the array radiation patterns, adaptive cancellation, covariance matrix eigenvalues, and adaptive array weights  相似文献   

6.
Near-field antenna measurements combined with a near-field far-field transformation are an established antenna characterization technique. The approach avoids far-field measurements and offers a wide area of post-processing possibilities including radiation pattern determination and diagnostic methods. In this paper, a near-field far-field transformation algorithm employing plane wave expansion is presented and applied to the case of spherical near-field measurements. Compared to existing algorithms, this approach exploits the benefits of diagonalized translation operators, known from fast multipole methods. Due to the plane wave based field representation, a probe correction, using directly the probe's far-field pattern can easily be integrated into the transformation. Hence, it is possible to perform a full probe correction for arbitrary field probes with almost no additional effort. In contrast to other plane wave techniques, like holographic projections, which are suitable for highly directive antennas, the presented approach is applicable for arbitrary radiating structures. Major advantages are low computational effort with respect to the coupling matrix elements owing to the use of diagonalized translation operators and the efficient correction of arbitrary field probes. Also, irregular measurement grids can be handled with little additional effort.  相似文献   

7.
An automated procedure for modeling the radiated emissions of electronic devices is presented in this paper. The principle of the model is to replace the device by a set of electric dipoles defined by their positions, orientations, lengths, and currents. Thus, this modeling procedure aims to determine the number of dipoles and their parameters with a minimum user intervention. The procedure is divided into three parts: the near-field measurements of the tangential components of the magnetic field, an image processing to obtain the number of sources of the model, and the application of an optimization algorithm in order to obtain the different parameters of the model, such as the current and the position of each source.   相似文献   

8.
The possibility of determining the far field of radiating systems by measuring only the near-field amplitude is investigated. The main difficulties of the problem are examined in some detail and a new near-field/far-field transformation technique is developed, based on the measurement of the near-field amplitude over two surfaces surrounding the antenna under test. The accuracy of the far-field reconstruction results are related both to the distance between such surfaces and to some a priori information concerning the near-field phase and/or the radiating system. The information on the radiating system allows relaxation of the need for any information on the near-field phase provided that the distance between the measurement surfaces is high enough. Conversely, the knowledge of a more or less corrupted near-field phase allows reduction of such distances without affecting the accuracy of the far-field reconstruction. Numerical examples validating the effectiveness of the developed algorithm are provided for the planar scanning case  相似文献   

9.
A method is presented for computing far-field antenna patterns from measured near-field data measured by an array of planar dipole probes. The method utilizes the near-field data to determine some equivalent magnetic current sources over a fictitious planar surface which encompasses the antenna. These currents are then used to find the far fields. The near-field measurement is carried out by terminating each dipole with 50 Ω load impedances and measuring the complex voltages across the loads. An electric field integral equation (EFIE) is developed to relate the measured complex voltages to the equivalent magnetic currents. The mutual coupling between the array of probes and the test antenna modeled by magnetic dipoles is taken into account. The method of moments with Galerkin's type solution procedure is used to transform the integral equation into a matrix one. The matrix equation is solved with the conjugate gradient-fast Fourier transformation (CG-FFT) method exploiting the block Toeplitz structure of the matrix. Numerical results are presented for several antenna configurations to show the validity of the method  相似文献   

10.
An alternative method is presented for computing far-field antenna patterns from near-field measurements. The method utilizes the near-field data to determine equivalent magnetic current sources over a fictitious planar surface that encompasses the antenna, and these currents are used to ascertain the far fields. Under certain approximations, the currents should produce the correct far fields in all regions in front of the antenna regardless of the geometry over which the near-field measurements are made. An electric field integral equation (EFIE) is developed to relate the near fields to the equivalent magnetic currents. The method of moments is used to transform the integral equation into a matrix one. The matrix equation is solved with the conjugate gradient method, and in the case of a rectangular matrix, a least-squares solution for the currents is found without explicitly computing the normal form of the equation. Near-field to far-field transformation for planar scanning may be efficiently performed under certain conditions. Numerical results are presented for several antenna configurations  相似文献   

11.
A near-field to far-field transformation based on the antenna representation by equivalent magnetic current (EMC) sources has been proposed and validated experimentally on large high-directivity antenna arrays. In this paper, the use of EMC is extended to the diagnostics of low-directivity printed antennas. The limitation of the near-field to far-field transformation applied to EMC models of low-directivity antennas, caused by the finite dimensions of the antenna ground plane, is demonstrated. A method to partially overcome this limitation by including the contribution of diffracted rays is implemented, and its effectiveness is demonstrated with antenna prototypes. It is shown that the agreement between the far-field patterns measured in an anechoic chamber and the patterns computed from the EMC model obtained from the near-field measurements is significantly improved upon, within a sector of ±90° with respect to the antenna boresight in the E plane. The influence of the near-field sampling density and topology of the EMC model on the accuracy of the predicted far-field pattern is examined  相似文献   

12.
An attempt to relate polarization dispersion directly to some physical property and then use this as a means by which to characterize polarization-mode dispersion (PMD) is reported. A new diagnostic procedure has been developed and tested for screening dispersion-shifted (DS) fibers with PMD due to core ellipticity. Measurements of far-field radiation profiles across major and minor core axes are used to characterize polarization-mode dispersion. This technique is a relatively simple and quick method of screening dispersion-shifted fibers for polarization-mode dispersion greater than 5 ps/km. Differences in these far-field pattern widths were then correlated with direct core ovality measurements performed using the near-field refraction technique. The authors outline the test procedure in detail, analyze sources of error, and discuss detection limitations  相似文献   

13.
本文提出了一种用于近场辐射源定位的高效3D -MUSIC算法。该算法首先假设信号源为远场源,得到有关近场信号源与假设的远场信号源的关系式;然后利用傅立叶变换与多项式根方法计算远场辐射源的仰角和方位角,建立近场辐射源的搜索路径,沿此路径用传统的3 D-MUSIC搜索,确定近场辐射源的位置;最后在该位置附近进行局部优化搜索,得到最佳结果。仿真结果表明,该方法精确定位,计算时间短,有效地提高了定位的实时性。  相似文献   

14.
混合源定位在无源雷达中发挥着重要作用.针对均匀圆阵下基于相位差方法的定位精度较低的问题,该文提出基于矩阵差分的远场和近场混合源定位方法.首先,利用二维多重信号(2-D MUSIC)分类方法估计出远场源的方位角和俯仰角;随后,利用协方差矩阵差分方法提取出近场源差分矩阵,通过改进的类旋转不变估计信号参数(ESPRIT-li...  相似文献   

15.
This paper presents a new approach to derive far-field data needed in antenna and EMI/EMC testing from near-field measurements. An exact integral equation solution to the wave propagation problem is used to transform the near-field data to the far field. The method requires near-field measurements on two closed surfaces enclosing all sources and inhomogeneities. The approach is validated with numerical simulation of measurements of fields radiated from a known antenna  相似文献   

16.
There is a growing demand for impulse radiating antennas (IRAs) to receive and transmit short pulses. The basic concepts of IRA are reviewed and the far-field pattern versus frequency of an ideal IRA is characterized based on the fundamental properties of IRA. It is shown that the transmitted pulse is ideally in the form of a time derivative of the input pulse. The physical optics simulation results show that the far-field characteristics of a parabolic reflector are very close to an ideal IRA if it is fed properly. The reflector IRA was constructed, analyzed and measured at UCLA. The near-field and far-field characteristics of the reflector IRA are studied using both the method of moments (MoM) full-wave simulations and the frequency domain measurements. In this paper, the radiation mechanism of the reflector IRA is studied using a detailed current distribution on the parabolic reflector and the feeding structure at different frequencies. Applying either the calculated current distribution on the reflector IRA or the measured near-field results, it is seen that the aperture field intensity of the parabolic reflector is not the same in the two principle planes and as a result the beam-widths in the two principle planes are different. The far-field patterns of the antenna are measured and the calculated far-field patterns support the measured results. The calculated current distribution results provide a guideline on how to properly change the feeding structure to achieve a more uniform aperture field and increase the antenna radiation efficiency.  相似文献   

17.
A method to derive an equivalent radiation source for planar antennas is presented. This method is based on spherical near-field (NF) data (measured or computed) to ascertain an equivalent set of infinitesimal dipoles placed over the main antenna aperture. These produce the same antenna radiation field, both inside and outside the minimum sphere enclosing the antenna. A spherical wave expansion (SWE) of the NF data is written in terms of infinitesimal dipoles using a transition matrix. This matrix expresses the linear relations between the transmission coefficients of the antenna and the transmission coefficients of each dipole. The antenna a priori information are used to set the spatial distribution of the equivalent dipoles. The translational and rotational addition theorems are exploited to derive the transmission coefficients of the dipoles. Once the excitation of each dipole is known, the field at any aspect angle and distance from the antenna is rapidly calculated. Computations with EM simulation data of an antenna array illustrate the reliability of the method.   相似文献   

18.
Antenna far-fields from planar acquisition using micro-genetic algorithms   总被引:1,自引:0,他引:1  
A method for modelling the radiation of an antenna under test from planar near-field data using equivalent magnetic currents (EMC) is presented. Micro-genetic algorithms are used to optimise each component of the EMC. Numerical results of near-field to far-field transformation are reported and discussed.  相似文献   

19.
基于均匀圆阵,提出一种近场源距离-方位角-俯仰角联合估计算法。利用阵元观测数据,构造一组高阶累积量矩阵,通过矩阵联合对角化技术得到阵列流形矩阵的估计。根据阵列流形矩阵的估计以及近场和远场条件下方位角相同的结论,获得方位角的估计。利用阵列流形矩阵和方位角的估计,得到距离和俯仰角的估计。该方法无需二维频域峰值搜索或参数配对。计算机仿真验证了算法的有效性。  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号