首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ion cyclotron resonance frequency, f, is conventionally converted to ion mass-to-charge ratio, m/z (mass "calibration") by fitting experimental data spanning the entire detected m/z range to the relation, m/z = A/f + B/f(2), to yield rms mass error as low as ~200 ppb for ~10?000 resolved components of a petroleum crude oil. Analysis of residual error versus m/z and peak abundance reveals that systematic errors limit mass accuracy and thus the confidence in elemental composition assignments. Here, we present a calibration procedure in which the spectrum is divided into dozens of adjoining segments, and a separate calibration is applied to each, thereby eliminating systematic error with respect to m/z. Further, incorporation of a third term in the calibration equation that is proportional to the magnitude of each detected peak minimizes systematic error with respect to ion abundance. Finally, absorption-mode data analysis increases mass measurement accuracy only after minimization of systematic errors. We are able to increase the number of assigned peaks by as much as 25%, while reducing the rms mass error by as much as 3-fold, for significantly improved confidence in elemental composition assignment.  相似文献   

2.
Valence parity provides a way to distinguish between N-terminal and C-terminal electron capture dissociation/electron transfer dissociation (ECD/ETD) product ions based on their number of hydrogen plus nitrogen atoms determined by accurate mass measurement and forms a basis for de novo peptide sequencing. The effect of mass accuracy (0.1-1 ppm error) on c'/z(?) overlap and unique elemental composition overlap is evaluated for a database of c'/z(?) product ions each based on all possible amino acid combinations and four subset databases containing the same c' ions but with z(?) ions determined by in silico digestion with trypsin, Glu-C, Lys-C, or chymotrypsin. High mass accuracy reduces both c'/z(?) overlap and unique elemental composition overlap. Of the four proteases, trypsin offers slightly better discrimination between N- and C-terminal ECD/ETD peptides. Interestingly, unique elemental composition overlap curves for c'/c' and z(?)/z(?) peptide ions exhibit discontinuities at certain nominal masses for 0.1-1.0 ppm mass error. Also, as noted in the companion article (Polfer et al. Anal. Chem.2011, DOI: 10.1021/ac201624t), the number of ECD/ETD product ion amino acid compositions as a function of nominal mass increases exponentially with mass but with a superimposed modulation due to higher prevalence of certain elemental compositions.  相似文献   

3.
The high mass measurement accuracy and precision available with recently developed mass spectrometers is increasingly used in proteomics analyses to confidently identify tryptic peptides from complex mixtures of proteins, as well as post-translational modifications and peptides from nonannotated proteins. To take full advantage of high mass measurement accuracy instruments, it is necessary to limit systematic mass measurement errors. It is well known that errors in m/z measurements can be affected by experimental parameters that include, for example, outdated calibration coefficients, ion intensity, and temperature changes during the measurement. Traditionally, these variations have been corrected through the use of internal calibrants (well-characterized standards introduced with the sample being analyzed). In this paper, we describe an alternative approach where the calibration is provided through the use of a priori knowledge of the sample being analyzed. Such an approach has previously been demonstrated based on the dependence of systematic error on m/z alone. To incorporate additional explanatory variables, we employed multidimensional, nonparametric regression models, which were evaluated using several commercially available instruments. The applied approach is shown to remove any noticeable biases from the overall mass measurement errors and decreases the overall standard deviation of the mass measurement error distribution by 1.2-2-fold, depending on instrument type. Subsequent reduction of the random errors based on multiple measurements over consecutive spectra further improves accuracy and results in an overall decrease of the standard deviation by 1.8-3.7-fold. This new procedure will decrease the false discovery rates for peptide identifications using high-accuracy mass measurements.  相似文献   

4.
The use of delayed ion extraction in MALDI time-of-flight mass spectrometry distorts the linear relationship between m/z and the square of the ion flight time (t2) with the consequence that, if a mass accuracy of 10 ppm or better is to be obtained, the calibrant signals have to fall close to the analyte signals. If this is not possible, systematic errors arise. To eliminate these, a higher-order calibration function and thus several calibrant signals are required. For internal calibration, however, this approach is limited by signal suppression effects and the increasing chance of the calibrant signals overlapping with analyte signals. If instead the calibrants are prepared separately, this problem is replaced by an other; i.e., the ion flight times are dependent on the sample plate position. For this reason, even if the calibrants are placed close to the sample, the mass accuracy is not improved when a higher-order calibration function is applied. We have studied this phenomenon and found that the relative errors, which result when moving from one sample to the next, are directly proportional to m/z. Based on this observation, we developed a two-step calibration method, that overcomes said limitations. The first step is an external calibration with a high-order polynomial function used for the determination of the relation between m/z and t2, and the second step is a first-order internal correction for sample position-dependent errors. Applying this method, for instance, to a mass spectrum of a mixture of 18 peptides from a tryptic digest of a recombinant protein resulted in an average mass error of 1.0 ppm with a standard deviation of 3.5 ppm. When instead using a conventional two-point internal calibration, the average relative error was 2.2 ppm with a standard deviation of 15 ppm. The new method is described and its performance is demonstrated with examples relevant to proteome research.  相似文献   

5.
Important factors that limit the mass measurement accuracy from a mass spectrometer are related to (1) the type of mass analyzer used and (2) the data processing/calibration methods used to obtain mass values from the raw data. Here, two data processing methods are presented that correct for systematic deviations when the mass of ions is measured using a time-of-flight (TOF) mass spectrometer. The first fitting method is one where m/z values are obtained from fitting peak distributions using double Gaussian functions. A second calibration method takes into account the slight nonlinear response of the TOF analyzer in addition to the drift in the calibration over time. Using multivariate regression, both of these two effects can be corrected for using a single calibration formula. Achievable performance was evaluated with a trypsin digestion of serum albumin and proteins from the organism D. radiodurans that was analyzed using gradient reversed-phase liquid chromatography combined with an electrospray ionization orthogonal TOF mass spectrometer. The root-mean-square deviation between the theoretical and experimental m/z values for serum albumin tryptic peptides was found to be 8 ppm using the double Gaussian-multivariate method compared to 29 ppm determined using linear calibration and normal peak centroiding. An advantage of the methods presented here is that no calibrant compounds need to be added to the mobile phase, thereby avoiding interference effects and signal suppression of analytes.  相似文献   

6.
An ion trap/ion mobility/quadrupole/time-of-flight mass spectrometer has been developed for the analysis of peptide mixtures. In this approach, a mixture of peptides is electrosprayed into the gas phase. The mixture of ions that is created is accumulated in an ion trap and periodically injected into a drift tube where ions separate according to differences in gas-phase ion mobilities. Upon exiting the drift tube, ions enter a quadrupole mass filter where a specific mass-to-charge (m/z) ratio can be selected prior to collisional activation in an octopole collision cell. Parent and fragment ions that exit the collision cell are analyzed using a reflectron geometry time-of-flight mass spectrometer. The overall configuration allows different species to be selected according to their mobilities and m/z ratios prior to collision-induced dissociation and final MS analysis. A key parameter in these studies is the pressure of the target gas in the collision cell. Above a critical pressure, the well-defined mobility separation degrades. The approach is demonstrated by examining a mixture of tryptic digest peptides of ubiquitin.  相似文献   

7.
Several methods to obtain low-ppm mass accuracy have been described. In particular, online or offline lock mass approaches can use background ions, produced by electrospray under ambient conditions, as calibrants. However, background ions such as protonated and ammoniated polydimethylcyclosiloxane ions have relatively weak and fluctuating intensity. To address this issue, we implemented dynamic offline lock mass (DOLM). Within every MS1 survey spectrum, DOLM dynamically selected the strongest n background ions for statistical treatments and m/z recalibration. We systematically optimized the mass profile abstraction method to find one single m/z value to represent an ion and the number of calibrants. To assess the influence of the intensity of the analyte ions, we used tandem mass spectroscopy (MS/MS) datasets obtained from MudPIT analyses of two protein samples with different dynamic ranges. DOLM outperformed both external mass calibration and offline lock mass that used predetermined calibrant ions, especially in the low-ppm range. The unique dynamic feature of DOLM was able to adapt to wide variations in calibrant intensities, leading to averaged mass error center at 0.03 ± 0.50 ppm for precursor ions. Such consistently tight mass accuracies meant that a precursor mass tolerance as low as 1.5 ppm could be used to search or filter post-search DOLM-recalibrated MS/MS datasets.  相似文献   

8.
9.
Enke CG  Dobson GS 《Analytical chemistry》2007,79(22):8650-8661
Distance-of-flight mass spectrometry (DOF-MS) has not yet been implemented, though it has many potential advantages in a variety of applications. Impeding the implementation of DOF-MS is the development of the required array detectors and working out the equivalents to the focusing methods now used in time-of-flight (TOF) mass analyzers. Ideally, a batch of ions composed of a variety of m/z values, despite initial distributions of space and energy, would be spatially focused at their respective flight distances at the same time. First-order energy focusing, including ion turnaround, is shown to be accomplished by the use of an ion mirror in conjunction with constant momentum acceleration of the initial ion packet. The initial spatial dispersion is maintained throughout the flight path. With zero initial spatial ion spread, energy focusing to achieve resolutions in the tens of thousands is shown to be feasible with ions from the elemental and isotope ratio mass regions through the extremely high m/z range. With moderate spatial spread taken into account, the DOF-MS approach is shown to achieve resolutions competitive with quadrupole and ion trap mass analyzers. Advantages of DOF-MS include all the advantages of TOF-MS plus simpler detector electronics and the improved signal-to-noise ratio and dynamic range afforded by array detection.  相似文献   

10.
The effect of ion space-charge on mass accuracy in Fourier transform ion cyclotron resonance mass spectrometry is examined. Matrix-assisted laser desorption/ionization is used to form a population of high-molecular-weight polymer ions with a wide mass distribution. The density of the ions in the analyzer cell is varied using ion remeasurement and suspended trapping techniques to allow the effect of ion space charge to be examined independently of other experimental influences. Observed cyclotron frequency exhibits a linear correlation with ion population. Mass errors of 100 ppm or more in externally calibrated mass spectra result when ion number is not taken into account. By matching the total ion intensities of calibrant and analyte mass spectra, the protonated ion of insulin B-chain, 3494.6513 Da, is measured with an accuracy of 0.07 ppm (average of 10 measurements, σ = 2.3 ppm, average absolute error 1.6 ppm) using a polymer sample as an external calibrant. Alternatively, the correction for space charge can be made by using a calibration equation that accounts for the total ion intensity of the mass spectrum. A calibration procedure is proposed and is tested with the measurement of the mass of insulin B-chain. A mass accuracy of 2.0 ppm (average of 20 measurements, σ = 4.2 ppm, average absolute error 3.5 ppm) is achieved. Space-charge-induced mass errors are more significant for samples with many components, such as a polymer, than for single-component samples such as purified peptides or proteins.  相似文献   

11.
We report the direct introduction of biological samples into a high-resolution mass spectrometer, the LTQ-Orbitrap, as a fast tool for metabolomic studies. A proof of concept study was performed on yeast cell extracts that were introduced into the mass spectrometer by using flow injection analysis, with an acquisition time of 3 min. Typical mass spectra contained a few thousand m/z signals, 400 of which were found to be analytically relevant (i.e., their intensity was 3-fold higher than that of the background noise and they occurred in at least 60% of the acquisition profiles under identical experimental conditions). The method was validated by studies of the matrix effect, linearity, and intra-assay precision. Accurate mass measurements in the Orbitrap discriminated between isobaric ions and also indicated the elemental composition of the ions of interest with mass errors below 5 ppm, for identification purposes. The proposed structures were then assessed by MSn experiments via the linear ion trap, together with accurate mass determination of the product ions in the Orbitrap analyzer. When applied to the study of cadmium toxicity, the method was as effective as that initially developed by using LC/ESI-MS/MS for a targeted approach. The same metabolic fingerprints were also subjected to multivariate statistical analyses. The results highlighted a reorganization of amino acid metabolism under cadmium conditions in order to increase the biosynthesis of glutathione.  相似文献   

12.
We show that highly charged ions can be generated if a pulsed infrared laser and a glycerol matrix are employed for atmospheric pressure matrix-assisted laser desorption/ionization mass spectrometry with a quadrupole ion trap. Already for small peptides like bradykinin, doubly protonated ions form the most abundant analyte signal in the mass spectra. The center of the charge-state distribution increases with the size of the analyte. For example, insulin is detected with a most abundant ion signal corresponding to a charge state of four, whereas for cytochrome c, the 10 times protonated ion species produces the most intense signal. Myoglobin is observed with up to 13 charges. The high m/z ratios allow us to use the Paul trap for the detection of MALDI-generated protein ions that are, owing to their high molecular weight, not amenable in their singly protonated charge state. Formation of multiple charges critically depends on the addition of diluted acid to the analyte-matrix solution. Tandem mass spectra generated by collision-induced dissociation of doubly charged peptides are also presented. The findings allow speculations about the involvement of electrospray ionization processes in these MALDI experiments.  相似文献   

13.
While investigating the in-source CID fragmentation of nonsteroidal antiinflammatory drugs (NSAIDs), it was noticed that the same fragment ion (nominal mass) formed in either positive or negative ion electrospray for a suite of NSAIDs. For example, ibuprofen with a molecular mass of 206, fragments to the m/z 161 ion in negative ion from its deprotonated molecule (m/z 205, [M - H]-) and fragments to the m/z 161 ion in positive ion from its protonated molecule (m/z 207, [M + H]+). This fragment ion was euphemistically called a "twin ion"because of the same nominal mass despite opposite charge. The CID fragmentation of the twin ions was confirmed also by LC/MS/MS ion trap. Accurate mass measurements in negative ion show that the loss was due to CO2 (measured loss of 43.9897 atomic mass units (u) versus calculated loss of 43.9898 u for N = 10) and in positive ion the loss is due to HCOOH (measured loss of 46.0048 u versus calculated loss of 46.0055 u, N = 10). It was realized that, in fact, the ions were not "identical mass twins of opposite charge" but separated in accurate mass by two electrons. The accurate mass measurement by liquid chromatography/time-of-flight-mass spectrometry (LC/TOF-MS) can distinguish between the two fragment ions of ibuprofen (161.13362 +/- 0.00019 and 161.13243 +/- 0.00014 for N = 20). This experiment was repeated for two other NSAIDs, and the mass of an electron was measured as the difference between the twin ions, which was 0.00062 u +/- 14.8% relative standard deviation (N = 20 analyses). Thus, the use of continuous calibration makes it possible to measure the mass of an electron within one significant figure using the NSAID solution. This result shows the importance of including electron mass in accurate mass measurements and the value of a benchmark test for LC/TOF-MS mass accuracy.  相似文献   

14.
Diphenhydramine (Benadryl) is a popular over-the-counter antihistaminic medication used for the treatment of allergies. After consumption, excretion, and subsequent discharge from wastewater treatment plants, it is possible that diphenhydramine will be found in environmental sediments due to its hydrophobicity (log P = 3.27). This work describes a methodology for the first unequivocal determination of diphenhydramine bound to environmental sediments. The drug is removed from the sediments by accelerated solvent extraction and then analyzed by liquid chromatography with a time-of-flight mass spectrometer and an ion trap mass spectrometer. This combination of techniques provided unequivocal identification and confirmation of diphenhydramine in two sediment samples. The accurate mass measurements of the protonated molecules were m/z 256.1703 and 256.1696 compared to the calculated mass of m/z 256.1701, resulting in errors of 0.8 and 2.3 ppm. This mass accuracy was sufficient to verify the elemental composition of diphenhydramine in each sample. Furthermore, accurate mass measurements of the primary fragment ion were obtained. This work is the first application of time-of-flight mass spectrometry for the identification of diphenhydramine and shows the accumulation of an over-the-counter medication in aquatic sediments at five different locations.  相似文献   

15.
A multichannel mass spectrometer based on the rectilinear ion trap (RIT) analyzer was designed and constructed for simultaneous high-throughput analysis of multiple samples. The instrument features four parallel ion source/mass analyzer/detector channels assembled in a single vacuum chamber and operated using a common set of control electronics, including a single rf amplifier and transformer coil. This multiplexed RIT mass spectrometer employs an array of four millimeter-sized ion traps (x(o) = 5.0 mm and y(o) = 4.0 mm, where x(o) and y(o) are the half-distances in the x and y dimensions, respectively). Mass spectra are acquired from four different samples simultaneously. The available mass/charge range is m/z 15-510 with excellent linearity of the mass calibration (R2 = 0.999 999). The peak width is less than 0.3 mass/charge units at m/z 146, corresponding to a resolution of approximately 500. Simultaneous MS/MS of ions due to four compounds (3-fluoroanisole, 4-fluoroanisole, 2-fluorobenzyl alcohol, 2,6-dimethylcyclohexanone) with the same nominal molecular radical cation but distinctive fragmentation patterns was demonstrated. Isolation and fragmentation efficiencies were approximately 25 and approximately 75%, respectively, measured in the typical case of the molecular radical cation of acetophenone. Preacquisition differential data were obtained by real-time subtraction of the ion signals from two channels of the multiplexed mass spectrometer. The differential experiment presented offers proof of principle of comparative mass spectra in high-throughput screening applications while reducing data storage requirements.  相似文献   

16.
Kutz KK  Schmidt JJ  Li L 《Analytical chemistry》2004,76(19):5630-5640
Herein we report the first application of Fourier transform mass spectrometry for the analysis of neuropeptides directly from neuronal tissues. Sample preparation protocols and instrumentation conditions are developed to allow in situ neuropeptide analysis of the neuroendocrine organs freshly isolated from a marine organism Cancer borealis. The utility of a previously developed in-cell accumulation (ICA) technique is extended for peptide analysis in complex tissue samples. With the ICA procedure, ion signals from multiple laser shots are accumulated in the analyzer cell prior to detection. This procedure allows the accumulation of ion signals without accumulating noise, thus improving the signal-to-noise ratio and enhancing the sensitivity for the detection of trace-level endogenous neuropeptides. De novo sequencing of peptides directly from tissue samples becomes more feasible through this improvement. Additionally, an integrated pulse sequence is constructed to cover a wide mass range from m/z 215 to 9000 by centering quadrupole collection of ions at different masses for successive laser shots. Finally, improved mass measurement accuracy (2 ppm) for tissue peptide analysis is achieved using ICA by incorporating calibrants on a separate spot from the sample of interest without premixing calibration standards with the analytes.  相似文献   

17.
A new strategy for identifying proteins by MALDI-TOF-MS peptide mapping is reported. In contrast to current approaches, the strategy does not rely on a good relative or absolute mass accuracy as the criterion that discriminates false positive results. The protein sequence database is first searched for all proteins that match a minimum five of the submitted masses within the maximum expected relative errors when the default or externally determined calibration constants are used, for instance, +/-500 ppm. Typically, this search retrieves many thousand candidate sequences. Assuming initially that each of these is the correct protein, the relative errors of the matching peptide masses are calculated for each candidate sequence. Linear regression analysis is then performed of the calculated relative errors as a function of m/z for each candidate sequence, and the standard deviation to the regression is used to distinguish the correct sequence among the candidates. We show that this parameter is independent of whether the mass spectrometric data were internally or externally calibrated. The result is a search engine that renders internal spectrum calibration unnecessary and adapts to the quality of the raw data without user interference. This is made possible by a dynamic scoring algorithm, which takes into account the number of matching peptide masses, the percentage of the protein's sequence covered by these peptides and, as new parameter, the determined standard deviation. The lower the standard deviation, the less cleavage peptides are required for identification and vice versa. Performance of the new strategy is demonstrated and discussed. All necessary computing has been implemented in a computer program, free access to which is provided in the Internet.  相似文献   

18.
Campylobacter jejuni, Campylobacter fetus, and Campylobacter coli were compared with Helicobacter pylori and Helicobacter mustelae by direct analysis of individual cultured colonies in 50% methanol-water with a matrix-assisted laser desorption/ionization time-of-flight mass spectrometer (MALDI-TOF MS). H. pylori and Campylobacter species from blood agar culture produced unique, complex spectra with over 25 different ions in mass/charge (m/z) range from 2,000 to 62,000. A biomarker for H. pylori was centered around m/z 58,268, and H. mustelae was distinguished from H. pylori by its ions at m/z 49,608 and 57,231. Campylobacters could be distinguished from Helicobacters by their lack of ions around m/z 58,000 and 61,000 as well as distinguishing biomarkers of lower m/z: 10,074 and 25,478 for C. coli; m/z 10,285 and 12,901 for C. jejuni; m/z 10,726 and 11,289 for C. fetus. MALDI-TOF MS is a rapid and direct method for detection of these potentially pathogenic bacteria from culture.  相似文献   

19.
Here we show that fragment ion abundances from dissociation of ions created from mixtures of multiply modified histone H4 (11 kDa) or of N-terminal synthetic peptides (2 kDa) correspond to their respective intact ion abundances measured by Fourier transform mass spectrometry. Isomeric mixtures of modified forms of the same protein are resolved and quantitated with a precision of 相似文献   

20.
Using matrix-assisted laser desorption/ionization (MAL DI) on a trapped ion mass spectrometer such as a Fourier transform mass spectrometer (FTMS) allows accumulation of ions in the cell from multiple laser shots prior to detection. If ions from separate MALDI samples are accumulated simultaneously in the cell, ions from one sample can be used to calibrate ions from the other sample. Since the ions are detected simultaneously in the cell, this is, in effect, internal calibration, but there are no selective desorption effects in the MALDI source. This method of internal calibration with adjacent samples is demonstrated here on cesium iodide clusters, peptides, oligosaccharides, poly(propylene glycol), and fullerenes and provides typical FTMS internal calibration mass accuracy of < 1 ppm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号