首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
基于特征选择的网络入侵检测模型   总被引:5,自引:0,他引:5  
研究网络安全问题,网络入侵手段多样,特征多,存在大量不利的冗余特征,传统网络入侵检测不考虑特征冗余,检测效率和正确论低。为更一步提高了网络安全,提出一种特征选择的网络入侵检测模模型。采用粒子群算法对网络系统状态特征和支持向量机参数进行同步选择,找到最优网络入侵检测模型特征和模型参数,降低了模型的输入样本维数。仿真结果表明,改进算法可降低特征维数,消除了不利于提高检测结果的冗余特征,并提高了网络入侵检测正确率,适合于小样本、实时要求高的网络入侵检测。  相似文献   

2.
为了提高网络入侵检测率,提出一种协同量子粒子群算法和最小二乘支持向量机的网络入侵检测模型(CQPSO-LSSVM)。将网络特征子集编码成量子粒子位置,入侵检测正确率作为特征子集优劣的评价标准,采用协同量子粒子群算法找到最优特征子集,采用最小二乘支持向量机建立网络入侵检测模型,并采用KDD CUP 99数据集进行仿真测试。结果表明,CQPSO-LSSVM获得了比其他入侵检测模型更高的检测效率和检测率。  相似文献   

3.
为了有效从收集的恶意数据中选择特征去分析,保障网络系统的安全与稳定,需要进行网络入侵检测模型研究;但目前方法是采用遗传算法找出网络入侵的特征子集,再利用粒子群算法进行进一步选择,找出最优的特征子集,最后利用极限学习机对网络入侵进行分类,但该方法准确性较低;为此,提出一种基于特征选择的网络入侵检测模型研究方法;该方法首先以增强寻优性能为目标对网络入侵检测进行特征选择,结合分析出的特征选择利用特征属性的Fisher比构造出特征子集的评价函数,然后结合计算出的特征子集评价函数进行支持向量机完成对基于特征选择的网络入侵检测模型研究方法;仿真实验表明,利用支持向量机对网络入侵进行检测能有效地提高入侵检测的速度以及入侵检测的准确性。  相似文献   

4.
刘永芬 《福建电脑》2012,28(4):89-91
本文提出了一种基于特征选择的超球面支持向量机方法,并将其应用于入侵检测中,有效地去除冗余属性。该方法通过特征选择方法找出最优特征子集,交由超球面支持向量机进行训练,最终生成分类模型。  相似文献   

5.
基于模糊支持向量机的网络入侵检测研究   总被引:3,自引:0,他引:3  
李华  张简政 《计算机科学》2005,32(11):77-80
模糊支持向量机理论属于统计学习理论,是支持向量机理论的推广,使支持向量机更好地运用到实际工作中。我们将其运用到网络入侵检测中,实验证明是可行的、高效的,有其特点和优势的。  相似文献   

6.
基于EPSO-RVM的网络入侵检测模型   总被引:1,自引:0,他引:1  
为了提高网络入侵检测的正确率,提出一种精英选择策略粒子群算法(EPSO)优化相关向量机(RVM)的网络入侵检测模型(EPSO-RVM)。将相关向量机的参数编码成粒子,将入侵检测正确率作为粒子群搜索的目标,通过粒子群算法对参数优化问题进行求解,并引入精英选择策略增强粒子群算法的全局搜索能力,根据最优参数建立基于RVM的入侵检测模型,采用KDD99数据集对其性能测试,结果表明,相对于对比模型,EPSO-RVM较好地解决了相关向量机参数优化难题,提高了网络入侵检测的正确率。  相似文献   

7.
入侵检测系统(IDs)作为一种新兴的安全技术得到了广泛的应用。提出了一种基于多级支持向量机的网络入侵检测模型。用支持向量机(SVM)精确的二类分类功能,建立多级分类器对网络入侵行为分别检测出拒绝服务攻击、预攻击探测、未授权的尝试访问及其他可疑活动,入侵检测实验的结果表明了该方法不仅检测准确性高,而且有较快的训练与检测速度,同时表明了该方法的有效性。  相似文献   

8.
基于多分类支持向量机的网络入侵检测技术   总被引:2,自引:0,他引:2  
李健  范万春  何驰 《计算机应用》2005,25(7):1551-1553,1561
对多分类支持向量机在网络入侵检测中的应用进行了研究,深入探讨了其中的关键技术问题和解决方法,并用KDD1999CUP中的标准入侵检测数据集对文中设计的支持向量机分类器进行了测试评估,将实验结果和BP神经网络方法进行了比较。实验证明,该方法在保持较低误警率的同时有着很好的检测率,并且在训练时间上优于BP网络方法。  相似文献   

9.
赵军 《计算机工程》2009,35(23):166-167
针对传统遗传算法在网络入侵检测中存在分类复杂的问题,提出结合条件熵遗传算法(CEGA)和支持向量机(SVM)的网络入侵检测算法。将入侵特征的抽取和分类模型的建立进行联合优化,同时利用训练数据的统计特性指导入侵特征的抽取,并对特征空间进行线性变换,得到优化的特征子集和分类模型,在提高分类检测率的同时降低检测时延。  相似文献   

10.
随着计算机网络的广泛应用,网络安全问题受到了前所未有的关注。入侵检测技术是一种主动性安全防护技术,是网络安全管理的重要手段之一。鉴于神经网络在计算机视觉、自然语言处理等领域取得的显著成就,针对网络入侵行为具有的不确定性、复杂性、多样性和动态性等特点,提出了一种将门控循环单元(GRU)应用于入侵检测的模型。该模型在传统门控循环单元基础上进行改进,采用双向门控循环单元(BiGRU)对数据进行正向和逆向学习,然后对学习结果进行线性组合,最后引入支持向量机作为分类器。采用京都大学蜜罐系统的2013年网络流量数据集进行实验测试,在数据集上实现了网络入侵检测的二分类问题。实验结果表明,基于支持向量机的双向门控循环单元(BiGRU-SVM)入侵检测模型误报率降低了5.15百分点,准确率提高了14.61百分点。表明BiGRU-SVM是一种可行且高效的方法,为网络入侵检测领域提供了一种新思路。  相似文献   

11.
基于改进人工鱼群算法的支持向量机预测   总被引:1,自引:0,他引:1       下载免费PDF全文
由于参数的选择范围较大,在多个参数中进行盲目搜索最优参数的时间代价较大,且很难得到最优参数.为此,提出一种基于改进人工鱼群算法(AFSA)的支持向量机(SVM)预测算法.对AFSA进行改进,并使用改进算法优化SVM.实验结果表明,与遗传算法、粒子群优化算法和基本AFSA优化的支持向量机相比,该算法的均方误差降低为2.51×10-3,提高了预测精度.  相似文献   

12.
针对日益严重的雾霾污染问题,提出融合协同进化人工鱼群算法和支持向量机的雾霾预测方法.首先,运用佳点集构造均匀分布的种群,并引入自适应视野范围策略、自适应步长策略、种群间协同策略,提出协同进化人工鱼群算法.然后,使用协同进化人工鱼群算法,优化支持向量机的主要参数.最后,构建基于支持向量机的雾霾预测模型,预测雾霾天气.在10个测试函数上的实验证明协同进化人工鱼群算法的性能,在6个UCI数据集上的实验验证预测模型的稳定性和有效性.  相似文献   

13.
针对入侵检测中存在样本少、特征多、难于将实际经验与现有算法有机结合的问题,将交互式遗传算法应用到入侵检测技术中,并结合SVM的特点,设计出改进后的分类识别算法。实验证明,将SVM与交互式遗传算法相结合应用于入侵检测领域中,算法有效、可行,而且能获得很好的检测率。  相似文献   

14.
为了准确检测出车辆交通图像的光照类型,从而有针对性地矫正不同光照以减少其对车牌定位的影响,提出了一种基于改进K近邻和支持向量相融合(KNN-SVM)的车辆图像光照检测方法。首先融合了HSV空间亮度特征、灰度直方图特征和投影直方图特征作为车辆图像的光照特征,然后改进传统KNN-SVM中距离计算方法,定义为每类待检测样本到属于该类支持向量的距离,并在采集的全天候不同光照车辆图像上进行检测验证。实验表明,改进KNN-SVM将阈值获取时间提前,避免了传统KNN-SVM对超平面附近样本先SVM检测再KNN检测的重复检测,不仅降低了算法复杂度和运行时间,且检测准确率高于传统KNN-SVM和单独使用KNN或SVM时的值,最高达到了99.67%。  相似文献   

15.
为适应支持向量机(Support Vector Machine,SVM)算法应用过程中的不同性能指标要求,将SVM算法的模型选择问题作为一个多目标优化(Multi-Object Optimization,MOO)问题进行处理。以改进的粒子群优化(Particle Swarm Optimization,PSO)算法对该多目标优化问题进行求解,得到其Pareto解集,在具体应用中根据实际需要从Pareto解集中选择适合的最优解作为支持向量机算法参数,实现支持向量机算法的模型选择。在几个数据集上的仿真实验表明,该方法能够较快地得到Pareto解集,解集中的参数组合能够满足对支持向量机算法速度和泛化能力的不同要求。  相似文献   

16.
入侵检测数据往往含有大量的冗余、噪音特征及部分连续型属性,为了提高网络入侵检测的效果,利用邻域粗糙集对入侵检测数据集进行属性约简,消除冗余属性及噪声,也避免了传统粗糙集在连续型属性离散化过程中带来的信息损失;使用粒子群算法优化支持向量机的核函数参数和惩罚参数,以避免靠主观选择参数带来精度较低的风险,进一步提高入侵检测的性能。仿真实验结果表明,该算法能有效提高入侵检测的精度,具有较高的泛化性和稳定性。  相似文献   

17.
为了提高网络入侵检测的正确率,提出一种改进蚁群优化算法(ACO)和支持向量机(SVM)相融合的网络入侵检测方法(ACO-SVM)。将SVM模型参数作为蚂蚁的位置向量,采用动态随机抽取的方法来确定目标个体引导蚁群进行全局搜索,同时在最优蚂蚁邻域内进行小步长局部搜索,找到SVM最优参数,采用最优参数建立网络入侵检测模型。利用KDDCUP99数据集对ACO-SVM性能进行测试,结果表明,ACO-SVM提高了网络入侵检测正确率,降低了误报率,可以为网络安全提供有效保证。  相似文献   

18.
介绍了一种基于粒子群算法和遗传算法优化支持向量机预测破产的方法。这种方法融合了粒子群算法、遗传算法和支持向量机诸多优点,并行地搜寻支持向量机最优的正则化参数和核参数,由此构建优化的预测模型。采用源自UCI机器学习数据库的破产和非破产混合样本数据集,随机地读入数据和进行数据预处理,运用7重交叉校验方法客观地评价预测结果。仿真结果显示,这种方法能自动有效地构建优化的支持向量机,与其他方法比较,具有更强的推广能力和更快的学习速度,而且具有更好的破产预测准确率。  相似文献   

19.
现有的垃圾邮件检测算法存在小样本情况下泛化能力差的问题。提出了利用核主成分分析和支持向量机结合进行垃圾邮件检测的方法。与传统算法相比,该方法与邮件异构有很高的检测率、更强的泛化能力和更高的检测效率。实验证明了方法的实用性和高效性。  相似文献   

20.
为提高网络数据的检测效率,将差分进化算法与支持向量机算法融合(DE-SVM)应用到网络入侵检测中。引入自适应算子优化差分进化算法中的交叉概率CR和摄动比例因子F,采用优化的DE算法对支持向量机的参数进行选择,构建DE-SVM入侵检测算法。KDDCUP 99数据集的测试结果表明,融合算法提高了网络入侵检测的性能,缩短了训练时间。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号