共查询到20条相似文献,搜索用时 62 毫秒
1.
基于特征选择的网络入侵检测模型 总被引:5,自引:0,他引:5
研究网络安全问题,网络入侵手段多样,特征多,存在大量不利的冗余特征,传统网络入侵检测不考虑特征冗余,检测效率和正确论低。为更一步提高了网络安全,提出一种特征选择的网络入侵检测模模型。采用粒子群算法对网络系统状态特征和支持向量机参数进行同步选择,找到最优网络入侵检测模型特征和模型参数,降低了模型的输入样本维数。仿真结果表明,改进算法可降低特征维数,消除了不利于提高检测结果的冗余特征,并提高了网络入侵检测正确率,适合于小样本、实时要求高的网络入侵检测。 相似文献
2.
为了提高网络入侵检测率,提出一种协同量子粒子群算法和最小二乘支持向量机的网络入侵检测模型(CQPSO-LSSVM)。将网络特征子集编码成量子粒子位置,入侵检测正确率作为特征子集优劣的评价标准,采用协同量子粒子群算法找到最优特征子集,采用最小二乘支持向量机建立网络入侵检测模型,并采用KDD CUP 99数据集进行仿真测试。结果表明,CQPSO-LSSVM获得了比其他入侵检测模型更高的检测效率和检测率。 相似文献
3.
李文 《计算机测量与控制》2017,25(8):214-217
为了有效从收集的恶意数据中选择特征去分析,保障网络系统的安全与稳定,需要进行网络入侵检测模型研究;但目前方法是采用遗传算法找出网络入侵的特征子集,再利用粒子群算法进行进一步选择,找出最优的特征子集,最后利用极限学习机对网络入侵进行分类,但该方法准确性较低;为此,提出一种基于特征选择的网络入侵检测模型研究方法;该方法首先以增强寻优性能为目标对网络入侵检测进行特征选择,结合分析出的特征选择利用特征属性的Fisher比构造出特征子集的评价函数,然后结合计算出的特征子集评价函数进行支持向量机完成对基于特征选择的网络入侵检测模型研究方法;仿真实验表明,利用支持向量机对网络入侵进行检测能有效地提高入侵检测的速度以及入侵检测的准确性。 相似文献
4.
本文提出了一种基于特征选择的超球面支持向量机方法,并将其应用于入侵检测中,有效地去除冗余属性。该方法通过特征选择方法找出最优特征手集,交由超球面支持向量机进行训练,最终生成分类模型。 相似文献
5.
基于模糊支持向量机的网络入侵检测研究 总被引:3,自引:0,他引:3
模糊支持向量机理论属于统计学习理论,是支持向量机理论的推广,使支持向量机更好地运用到实际工作中。我们将其运用到网络入侵检测中,实验证明是可行的、高效的,有其特点和优势的。 相似文献
6.
基于EPSO-RVM的网络入侵检测模型 总被引:1,自引:0,他引:1
为了提高网络入侵检测的正确率,提出一种精英选择策略粒子群算法(EPSO)优化相关向量机(RVM)的网络入侵检测模型(EPSO-RVM)。将相关向量机的参数编码成粒子,将入侵检测正确率作为粒子群搜索的目标,通过粒子群算法对参数优化问题进行求解,并引入精英选择策略增强粒子群算法的全局搜索能力,根据最优参数建立基于RVM的入侵检测模型,采用KDD99数据集对其性能测试,结果表明,相对于对比模型,EPSO-RVM较好地解决了相关向量机参数优化难题,提高了网络入侵检测的正确率。 相似文献
7.
8.
针对传统遗传算法在网络入侵检测中存在分类复杂的问题,提出结合条件熵遗传算法(CEGA)和支持向量机(SVM)的网络入侵检测算法。将入侵特征的抽取和分类模型的建立进行联合优化,同时利用训练数据的统计特性指导入侵特征的抽取,并对特征空间进行线性变换,得到优化的特征子集和分类模型,在提高分类检测率的同时降低检测时延。 相似文献
9.
入侵检测系统(IDs)作为一种新兴的安全技术得到了广泛的应用。提出了一种基于多级支持向量机的网络入侵检测模型。用支持向量机(SVM)精确的二类分类功能,建立多级分类器对网络入侵行为分别检测出拒绝服务攻击、预攻击探测、未授权的尝试访问及其他可疑活动,入侵检测实验的结果表明了该方法不仅检测准确性高,而且有较快的训练与检测速度,同时表明了该方法的有效性。 相似文献
10.
11.
提出一种基于改进人工鱼群算法优化支持向量机(SVM)的变压器故障诊断方法。首先对基本人工鱼群算法进行改进,引入柯西变异优化觅食行为,并在算法的迭代过程中利用鱼群搜索到的信息和[t]分布变异的特点,对劣质个体鱼进行消亡与重生,提高鱼群算法的寻优效率和求解精度。然后,利用改进的人工鱼群算法优化SVM的核函数参数及惩罚系数,使SVM分类器获得最佳的分类精度。最后采用决策导向无环图(DDAG)方法建立变压器故障诊断SVM多分类决策模型。通过仿真实验将提出的方法与网格搜索法Grid-SVM、GA-SVM、PSO-SVM比较,所建模型具有更高的诊断正确率。 相似文献
12.
针对入侵检测中存在样本少、特征多、难于将实际经验与现有算法有机结合的问题,将交互式遗传算法应用到入侵检测技术中,并结合SVM的特点,设计出改进后的分类识别算法。实验证明,将SVM与交互式遗传算法相结合应用于入侵检测领域中,算法有效、可行,而且能获得很好的检测率。 相似文献
13.
为提高网络数据的检测效率,将差分进化算法与支持向量机算法融合(DE-SVM)应用到网络入侵检测中。引入自适应算子优化差分进化算法中的交叉概率CR和摄动比例因子F,采用优化的DE算法对支持向量机的参数进行选择,构建DE-SVM入侵检测算法。KDDCUP 99数据集的测试结果表明,融合算法提高了网络入侵检测的性能,缩短了训练时间。 相似文献
14.
本文针对交通数据挖掘领域的交通流预测问题进行研究和实现.主要对数据挖掘技术应用于交通流数据的特征选择和交通流预测模型的建立提出算法.在对采样数据进行清洗后,以分类与回归决策树作为基学习器,采用梯度提升决策树进行回归拟合,计算出交通数据的特征重要度.并以此重要度作为自适应特征选择的依据.其次,采用聚类算法对选取后的特征数据进行聚类分析,缩小样本大小的同时,同类数据更加相似.最后,以实时数据匹配相应聚类作为训练数据集,使用经过人工鱼群算法优化参数后的支持向量机进行交通流预测.本文结尾通过实验数据论证本文所提出的算法和模型. 相似文献
15.
针对日益严重的雾霾污染问题,提出融合协同进化人工鱼群算法和支持向量机的雾霾预测方法.首先,运用佳点集构造均匀分布的种群,并引入自适应视野范围策略、自适应步长策略、种群间协同策略,提出协同进化人工鱼群算法.然后,使用协同进化人工鱼群算法,优化支持向量机的主要参数.最后,构建基于支持向量机的雾霾预测模型,预测雾霾天气.在10个测试函数上的实验证明协同进化人工鱼群算法的性能,在6个UCI数据集上的实验验证预测模型的稳定性和有效性. 相似文献
16.
17.
入侵检测是计算机网络安全中不可或缺的组成部分,其中异常检测更是该领域研究的热点内容。现有的检测方法中,SVM 能够在小样本条件下保持良好的检测状态。但是单一的SVM检测仍存在检测率不高、误报率过高等局限性。结合D-S证据理论,提出一种基于多SVM融合的异常检测方法,有效地弥补单个SVM检测的局限性。通过KDD99评测数据的评测实验表明,该方法有效地提高了入侵检测率的同时降低了误报率,大幅度地提高了入侵检测系统的检测性能。 相似文献
18.
为了克服现有方法在空气质量预测上存在的缺点,文中通过采用改进的离散型人工鱼群算法,并结合分形维数,提出基于人工鱼群和分形维数融合SVM的空气质量预测方法.首先对人工鱼群算法聚群、觅食行为及移动方式进行离散化改进,引入跳出局部最优策略和并行机制.然后将改进的离散型人工鱼群算法结合分形维数,约简空气质量数据集.最后采用基于高斯核SVM建立空气质量预测模型.在北京、上海和广州近2年的空气质量数据上的实验表明,文中方法预测性能较优,具有较高的稳定性和可信性. 相似文献
19.
根据支持向量机算法的原理,建立基于支持向量机的园林设计评价模型,通过引入二进制微粒群算法对影响园林设计的特征参数进行选择,解决了大量无关或冗余特征所造成的\"维数灾难\"和降低分类器性能的问题,利用SVM多类分类器实现了对园林设计的评价。实例分析表明,该方法提高了园林设计评价的准确性和可靠性。 相似文献
20.
赵晖 《计算机工程与应用》2013,49(18):73-77
入侵检测数据往往含有大量的冗余、噪音特征及部分连续型属性,为了提高网络入侵检测的效果,利用邻域粗糙集对入侵检测数据集进行属性约简,消除冗余属性及噪声,也避免了传统粗糙集在连续型属性离散化过程中带来的信息损失;使用粒子群算法优化支持向量机的核函数参数和惩罚参数,以避免靠主观选择参数带来精度较低的风险,进一步提高入侵检测的性能。仿真实验结果表明,该算法能有效提高入侵检测的精度,具有较高的泛化性和稳定性。 相似文献