首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 46 毫秒
1.
CPM(conceptual partitioning monitoring)是一种较为高效的概念划分网格的思想,用以解决二维空间下的连续最近邻查询问题.在此思想的基础上提出一种采用树形结构来索引概念划分网格的连续最近邻查询算法T-CPM,通过一系列改进步骤,提升了这一算法的查询效率.实验证明,相比经典的算法,T-CPM优化了网格的检索顺序并节省了计算代价.此外,验证了将这一新的方法延伸到基于不确定空间对象的连续最近邻查询问题中,以此给出了一种针对动态不确定空间数据最近邻查询问题的思路和方法.  相似文献   

2.
基于空间填充曲线网格划分的最近邻查询算法   总被引:1,自引:0,他引:1  
在建树过程中,R树存在最小边界矩形之间重叠的现象。当数据量较大时,重叠现象尤为严重,基于R树最近邻查询算法的性能急剧恶化。针对该问题,利用空间填充曲线的降低维度特性和数据聚类特性,提出一种基于网格划分最近邻查询算法。该算法将整个数据空间划分成大小相等、互不重叠的网格,对网格中的点进行线性排序之后,只需要访问查询点所在网格中的点及其周边邻近网格中的点,就能够获得最近邻。在Hilbert曲线、Z曲线和Gray曲线上实现3种最近邻查询算法,在映射算法和数据聚类特性上实验比较3种曲线之间的性能差异。实验结果表明,算法的查询性能明显优于顺序扫描算法和基于R树的最近邻查询算法。  相似文献   

3.
王淼  郝忠孝 《计算机工程》2010,36(10):47-49
多数不确定性对象的反向近邻查询不能明确回答某个不确定性对象是否为查询对象的反向最近邻,针对该问题,提出概率反向最近邻查询的概念,设计不确定性对象的概率反向最近邻查询的索引结构,给出一种基于该结构的不确定性对象的反向最近邻查询算法。  相似文献   

4.
最近邻查询在地理信息系统、智能交通系统、多媒体应用以及数据挖掘等领域有着广泛的应用,随着对最近邻查询问题研究的深入,其应用前景和发展空间将更为广阔。针对近几年时空数据库中提出的最近邻查询的多种变体查询问题进行了详细地介绍和分析,总结了解决这些变体最近邻查询问题的有效方法,最后对最近邻查询问题的发展方向进行了展望。  相似文献   

5.
最近邻查询是空间数据查询领域中最重要的查询技术之一.最近邻查询根据所查询的目标对象的运动特性分为静态最近邻查询和动态最近邻查询.静态最近邻查询的关键在于运用最小距离和最小最大距离作为查询条件,对索引树的节点进行排序和剪枝进而查找目标对象 通过对现有最近邻查询算法的分析研究,比较这些现有算法的优缺点  相似文献   

6.
移动对象反向最近邻查询技术研究   总被引:2,自引:0,他引:2  
提出一种基于自调节网格索引的反向最近邻查询(RNNQ)算法,将空间划分为大小相等的网格单元,每个单元作为一个桶存储移动对象,采用基于桶内对象数目和网格几何特征的剪枝策略减少反向最近邻查询所需访问的节点。查询点周围单元桶内对象过多时进行二次网格划分,减小节点访问代价。实验结果表明,该算法具有良好的查询性能,优于基于TPR树索引的RNNQ算法。  相似文献   

7.
空间数据库的多类型最近邻查询逐渐受到人们的关注,关于K最近邻查询的研究也较多,但多类型K最近邻查询的研究还存在空白。针对道路网络中的多类型K-最近邻(MT-KNN)问题,结合多类型最近邻查询及K最近邻查询的理论,提出了多类型K最近邻查询算法。通过对分层编码视图进行扩展,建立了多路径分层编码视图,并利用逐步扩展局部路径的方法,实现了多类型K最近邻查询,实验结果分析表明算法具有较好的性能。  相似文献   

8.
闵寻优  郝忠孝 《软件》2011,32(2):81-84
连续最近邻查询是空间数据库中一种非常重要的查询。在这个问题的研究中,多数是针对二维空间的。提出三维空间中的连续最近邻查询,它在现实中有着广泛的应用价值。提出了垂直平分面、分割点和邻接球等概念,给出了筛选规则、定理和查询算法,进行了实验,表明具有较高的查询效率。  相似文献   

9.
连续最近邻查询方法研究   总被引:3,自引:0,他引:3  
本文分析了目前进行连续最近邻查询的几种方法,并由该问题的几何特征入手,提出了基于R-tree的查询算法,可以避免分割点的丢失和高代价的查询,能够有效地完成移动对象的连续最近邻查询.  相似文献   

10.
杨泽雪  郝忠孝 《计算机工程》2014,(1):272-274,279
为解决动态环境中移动点的连续反向最近邻查询问题,将连续反向最近邻查询分为单色和双色2种情况进行研究。利用移动点Voronoi图,分别给出单色连续反向最近邻查询算法、双色连续反向最近邻查询算法以及相关定理,对算法正确性和可终止性进行证明,分析算法时间复杂性。按照移动点Voronoi图的拓扑结构是否改变分为2种情况,分析每种情况下候选所在区域的变化,在变化区域内进行Voronoi图的重构,得到对应的解决方法。在多数情况下,该算法只需生成局部移动点的Voronoi图即可找到结果,减小了连续反向最近邻查询的代价。  相似文献   

11.
传统的反向k近邻查询的研究主要集中在k=1时的单色移动对象的反向最近邻查询上,单色和双色的反向k近邻查询问题还没有解决。利用网格索引结构结合60°平面修剪策略,提出了一种解决单色和双色的移动对象的连续反向k近邻查询方法。最后实验结果验证了算法的有效性。  相似文献   

12.
最近邻查询是地理信息系统领域经常遇到的问题,而反最近邻查询是在最近邻查询的基础上提出的一种新的查询类型。在分析利用Voronoi图进行最近邻查询的基础上,提出了基于Voronoi图及其对偶图Delaunay图的反最近邻查询,大大缩小了在海量空间数据库中进行反最近邻查询的查询范围。  相似文献   

13.
基于移动对象增量最近邻居查询(INCNN),提出一种移动对象增量组最近邻居查询方法(INCGNN)。该方法以较小的代价求出每次更新时刻的组最近邻居。针对组最近邻居查询的特点,给出了k+1组最近邻居查询改进算法,椭圆剪枝和延迟更新3种优化查询的策略。实验结果表明,INCGNN明显优于REEGNN,3种优化策略能较好地提高查询性能。  相似文献   

14.
组最近邻居查询是空间数据库在最近邻居查询上的新问题.目前,对组最近邻居查询的研究局限于欧氏空间,考察的只是对象间的相对位置关系,无法处理现实生活中对象间的连通性问题.鉴于此,本文基于空间网络数据库提出以网络距离为度量标准的组最近邻居查询概念,进而提出作为其算法基础的增量最近邻居查询算法INNN,最后构造出算法NMQM.
实验证明,NMQM是一种有效的组最近邻居查询算法.  相似文献   

15.
不确定数据上的概率相互最近邻查询具有重要的实际应用,针对目前关于这方面的研究尚少,提出了不确定数据上的概率相互最近邻的top-k查询算法。首先对问题进行描述与定义,其次总结可行的裁剪规则,从而裁剪查询对象中未计算的实例点。通过实验表明,该算法能有效地降低最近邻查询中的I/O开销,提高查询的响应速度。  相似文献   

16.
给出了概率查询的分类,描述了最近邻查询及其基于R-树的深度优先算法,针对此算法的不足,提出了对mindist的改进以完成移动对象的最近邻查询。  相似文献   

17.
哈希表示的比特串是解决海量数据相似性搜索问题最有效的方法之一.针对比特串索引方式导致搜索效果低下的问题,提出一种基于比特串划分多索引的近邻搜索算法.首先由于比特串划分本质是一个组合优化问题,采用贪婪的思想给出该问题的近似解;其次在近邻查询阶段,结合多索引结构提出新的查询扩展和融合机制;最后通过采用一种查询自适应的办法优化多索引之间的不平衡性.在MNIST, CIFAR-10, SIFT-1M和GIST-1M数据集上使用Matlab软件进行实验的结果表明,该算法在基于哈希表示的索引结构以及在近邻搜索方面具有有效性和通用性.  相似文献   

18.
With the rapid advancements in positioning technologies such as the Global Positioning System (GPS) and wireless communications, the tracking of continuously moving objects has become more convenient. However, this development poses new challenges to database technology since maintaining up-to-date information regarding the location of moving objects incurs an enormous amount of updates. Existing indexes can no longer keep up with the high update rate while providing speedy retrieval at the same time. This study aims to improve k nearest neighbor (kNN) query performance while reducing update costs. Our approach is based on an important observation that queries usually occur around certain places or spatial landmarks of interest, called reference points. We propose the Reference-Point-based tree (RP-tree), which is a two-layer index structure that indexes moving objects according to reference points. Experimental results show that the RP-tree achieves significant improvement over the TPR-tree.
Aoying ZhouEmail:
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号