首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 795 毫秒
1.
West Nile virus (WNV), a member of the Flaviviridae family, is a mosquito‐borne pathogen that causes a large number of human infections each year. There are currently no vaccines or antiviral therapies available for human use against WNV. Therefore, efforts to develop new chemotherapeutics against this virus are highly desired. In this study, a WNV NS2B–NS3 protease inhibitor with a 1,3,4,5‐tetrasubstituted 1H‐pyrrol‐2(5H)‐one scaffold was identified by screening a small library of nonpeptidic compounds. Optimization of this initial hit by the synthesis and screening of a focused library of compounds with this scaffold led to the identification of a novel uncompetitive inhibitor ((?)‐ 1a16 , IC50=2.2±0.7 μM ) of the WNV NS2B–NS3 protease. Molecular docking of the chiral compound onto the WNV protease indicates that the R enantiomer of 1a16 interferes with the productive interactions between the NS2B cofactor and the NS3 protease domain and is thus the preferred isomer for inhibition of the WNV NS2B–NS3 protease.  相似文献   

2.
In recent years, clinical symptoms resulting from West Nile virus (WNV) infection have worsened in severity, with an increased frequency in neuroinvasive diseases among the elderly. As there are presently no successful therapies against WNV for use in humans, continual efforts to develop new chemotherapeutics against this virus are highly desired. The viral NS2B‐NS3 protease is a promising target for viral inhibition due to its importance in viral replication and its unique substrate preference. In this study, a WNV NS2B‐NS3 protease inhibitor with a 2‐{6‐[2‐(5‐phenyl‐4H‐[1,2,4]triazol‐3‐ylsulfanyl)acetylamino]benzothiazol‐2‐ylsulfanyl}acetamide scaffold was identified during screening. Optimization of this initial hit by synthesis and screening of a focused compound library with this scaffold led to the identification of a novel uncompetitive inhibitor ( 1 a24 , IC50=3.4±0.2 μM ) of the WNV NS2B‐NS3 protease. Molecular docking of 1 a24 into the WNV protease showed that the compound interferes with productive interactions of the NS2B cofactor with the NS3 protease and is an allosteric inhibitor of the WNV NS3 protease.  相似文献   

3.
A series of new substrate analogue inhibitors of the WNV NS2B–NS3 protease containing decarboxylated arginine mimetics at the P1 position was developed. Among the various analogues, trans‐(4‐guanidino)cyclohexylmethylamide (GCMA) was identified as the most suitable P1 residue. In combination with dichloro‐substituted phenylacetyl groups at the P4 position, three inhibitors with inhibition constants of <0.2 μM were obtained. These GCMA inhibitors have a better selectivity profile than the previously described agmatine analogues, and possess negligible affinity for the trypsin‐like serine proteases thrombin, factor Xa, and matriptase. A crystal structure in complex with the WNV protease was determined for one of the most potent inhibitors, 3,4‐dichlorophenylacetyl‐Lys‐Lys‐GCMA (Ki=0.13 μM ). The inhibitor adopts a horseshoe‐like conformation, most likely due to a hydrophobic contact between the P4 phenyl ring and the P1 cyclohexyl group, which is further stabilized by an intramolecular hydrogen bond between the P1 guanidino group and the P4 carbonyl oxygen atom. These inhibitors are stable, readily accessible, and have a noncovalent binding mode. Therefore, they may serve as suitable lead structures for further development.  相似文献   

4.
The NS5A protein plays a critical role in the replication of HCV and has been the focus of numerous research efforts over the past few years. NS5A inhibitors have shown impressive in vitro potency profiles in HCV replicon assays, making them attractive components for inclusion in all oral combination regimens. Early work in the NS5A arena led to the discovery of our first clinical candidate, MK‐4882 [2‐((S)‐pyrrolidin‐2‐yl)‐5‐(2‐(4‐(5‐((S)‐pyrrolidin‐2‐yl)‐1H‐imidazol‐2‐yl)phenyl)benzofuran‐5‐yl)‐1H‐imidazole]. While preclinical proof‐of‐concept studies in HCV‐infected chimpanzees harboring chronic genotype 1 infections resulted in significant decreases in viral load after both single‐ and multiple‐dose treatments, viral breakthrough proved to be a concern, thus necessitating the development of compounds with increased potency against a number of genotypes and NS5A resistance mutations. Modification of the MK‐4882 core scaffold by introduction of a cyclic constraint afforded a series of tetracyclic inhibitors, which showed improved virologic profiles. Herein we describe the research efforts that led to the discovery of MK‐8742, a tetracyclic indole‐based NS5A inhibitor, which is currently in phase 2b clinical trials as part of an all‐oral, interferon‐free regimen for the treatment of HCV infection.  相似文献   

5.
A series of cyclic active-site-directed inhibitors of the NS2B-NS3 proteases from Zika (ZIKV), West Nile (WNV), and dengue-4 (DENV4) viruses has been designed. The most potent compounds contain a reversely incorporated d -lysine residue in the P1 position. Its side chain is connected to the P2 backbone, its α-amino group is converted into a guanidine to interact with the conserved Asp129 side chain in the S1 pocket, and its C terminus is connected to the P3 residue via different linker segments. The most potent compounds inhibit the ZIKV protease with Ki values <5 nM. Crystal structures of seven ZIKV protease inhibitor complexes were determined to support the inhibitor design. All the cyclic compounds possess high selectivity against trypsin-like serine proteases and furin-like proprotein convertases. Both WNV and DENV4 proteases are inhibited less efficiently. Nonetheless, similar structure-activity relationships were observed for these enzymes, thus suggesting their potential application as pan-flaviviral protease inhibitors.  相似文献   

6.
Nonstructural protein 5A (NS5A) represents a novel target for the treatment of hepatitis C virus (HCV). Daclatasvir, recently reported by Bristol–Myers–Squibb, is a potent NS5A inhibitor currently under investigation in phase 3 clinical trials. While the performance of daclatasvir has been impressive, the emergence of resistance could prove problematic and as such, improved analogues are being sought. By varying the biphenyl‐imidazole unit of daclatasvir, novel inhibitors of HCV NS5A were identified with an improved resistance profile against mutant strains of the virus while retaining the picomolar potency of daclatasvir. One compound in particular, methyl ((S)‐1‐((S)‐2‐(4‐(4‐(6‐(2‐((S)‐1‐((methoxycarbonyl)‐L ‐valyl)pyrrolidin‐2‐yl)‐1H‐imidazol‐5‐yl)quinoxalin‐2‐yl)phenyl)‐1H‐imidazol‐2‐yl)pyrrolidin‐1‐yl)‐3‐methyl‐1‐oxobutan‐2‐yl)carbamate ( 17 ), exhibited very promising activity and showed good absorption and a long predicted human pharmacokinetic half‐life. This compound represents a promising lead that warrants further evaluation.  相似文献   

7.
A screen of a focused kinase inhibitor library against Trypanosoma brucei rhodesiense led to the identification of seven series, totaling 121 compounds, which showed >50 % inhibition at 5 μm . Screening of these hits in a T. b. brucei proliferation assay highlighted three compounds with a 1H‐imidazo[4,5‐b]pyrazin‐2(3H)‐one scaffold that showed sub‐micromolar activity and excellent selectivity against the MRC5 cell line. Subsequent rounds of optimisation led to the identification of compounds that exhibited good in vitro drug metabolism and pharmacokinetics (DMPK) properties, although in general this series suffered from poor solubility. A scaffold‐hopping exercise led to the identification of a 1H‐pyrazolo[3,4‐b]pyridine scaffold, which retained potency. A number of examples were assessed in a T. b. brucei growth assay, which could differentiate static and cidal action. Compounds from the 1H‐imidazo[4,5‐b]pyrazin‐2(3H)‐one series were found to be either static or growth‐slowing and not cidal. Compounds with the 1H‐pyrazolo[3,4‐b]pyridine scaffold were found to be cidal and showed an unusual biphasic nature in this assay, suggesting they act by at least two mechanisms.  相似文献   

8.
The structure‐based design, synthesis, biological evaluation, and X‐ray structural studies of fluorine‐containing HIV‐1 protease inhibitors are described. The synthesis of both enantiomers of the gem‐difluoro‐bis‐THF ligands was carried out in a stereoselective manner using a Reformatskii–Claisen reaction as the key step. Optically active ligands were converted into protease inhibitors. Two of these inhibitors, (3R,3aS,6aS)‐4,4‐difluorohexahydrofuro[2,3‐b]furan‐3‐yl(2S,3R)‐3‐hydroxy‐4‐((N‐isobutyl‐4‐methoxyphenyl)sulfonamido)‐1‐phenylbutan‐2‐yl) carbamate ( 3 ) and (3R,3aS,6aS)‐4,4‐difluorohexahydrofuro[2,3‐b]furan‐3‐yl(2S,3R)‐3‐hydroxy‐4‐((N‐isobutyl‐4‐aminophenyl)sulfonamido)phenylbutan‐2‐yl) carbamate ( 4 ), exhibited HIV‐1 protease inhibitory Ki values in the picomolar range. Both 3 and 4 showed very potent antiviral activity, with respective EC50 values of 0.8 and 3.1 nM against the laboratory strain HIV‐1LAI. The two inhibitors exhibited better lipophilicity profiles than darunavir, and also showed much improved blood–brain barrier permeability in an in vitro model. A high‐resolution X‐ray structure of inhibitor 4 in complex with HIV‐1 protease was determined, revealing that the fluorinated ligand makes extensive interactions with the S2 subsite of HIV‐1 protease, including hydrogen bonding interactions with the protease backbone atoms. Moreover, both fluorine atoms on the bis‐THF ligand formed strong interactions with the flap Gly 48 carbonyl oxygen atom.  相似文献   

9.
A DNA‐encoded chemical library (DECL) with 1.2 million compounds was synthesized by combinatorial reaction of seven central scaffolds with two sets of 343×492 building blocks. Library screening by affinity capture revealed that for some target proteins, the chemical nature of building blocks dominated the selection results, whereas for other proteins, the central scaffold also crucially contributed to ligand affinity. Molecules based on a 3,5‐bis(aminomethyl)benzoic acid core structure were found to bind human serum albumin with a Kd value of 6 nm , while compounds with the same substituents on an equidistant but flexible l ‐lysine scaffold showed 140‐fold lower affinity. A 18 nm tankyrase‐1 binder featured l ‐lysine as linking moiety, while molecules based on d ‐Lysine or (2S,4S)‐amino‐l ‐proline showed no detectable binding to the target. This work suggests that central scaffolds which predispose the orientation of chemical building blocks toward the protein target may enhance the screening productivity of encoded libraries.  相似文献   

10.
Three new 3‐amino‐6‐hydroxy‐2‐piperidone (Ahp)‐containing cyclic depsipeptides, named loggerpeptins A–C ( 1 3 ), along with molassamide ( 4 ), were discovered from a marine cyanobacterium, extending the structural diversity of this prevalent scaffold of cyanobacterial serine protease inhibitors. Molassamide, which contains a 2‐amino‐butenoic (Abu) unit in the cyclic core, was the most potent and selective analogue against human neutrophil elastase (HNE). Given the growing evidence supporting the role of HNE in breast cancer progression and metastasis, we assessed the cellular effects of compounds 3 and 4 in the context of targeting invasive breast cancer. Both compounds inhibited cleavage of the elastase substrate CD40 in biochemical assays; however, only 4 exhibited significant cellular activity. As CD40 and other receptor proteolytic processing culminates in NFκB activation, we assessed the effects of 4 on the expression of target genes, including ICAM‐1. ICAM‐1 is also a direct target of elastase and, in our studies, compound 4 attenuated both elastase‐induced ICAM‐1 gene expression and ICAM‐1 proteolytic processing by elastase, revealing a potential dual effect on migration through modulation of gene expression and proteolytic processing. Molassamide also specifically inhibited the elastase‐mediated migration of highly invasive triplenegative breast cancer cells.  相似文献   

11.
The emergence of extensively drug‐resistant strains of Mycobacterium tuberculosis (Mtb) highlights the need for new therapeutics to treat tuberculosis. We are attempting to fast‐track a targeted approach to drug design by generating analogues of a validated hit from molecular library screening that shares its chemical scaffold with a current therapeutic, the anti‐arthritic drug Lobenzarit (LBZ). Our target, anthranilate phosphoribosyltransferase (AnPRT), is an enzyme from the tryptophan biosynthetic pathway in Mtb. A bifurcated hydrogen bond was found to be a key feature of the LBZ‐like chemical scaffold and critical for enzyme inhibition. We have determined crystal structures of compounds in complex with the enzyme that indicate that the bifurcated hydrogen bond assists in orientating compounds in the correct conformation to interact with key residues in the substrate‐binding tunnel of Mtb‐AnPRT. Characterising the inhibitory potency of the hit and its analogues in different ways proved useful, due to the multiple substrates and substrate binding sites of this enzyme. Binding in a site other than the catalytic site was found to be associated with partial inhibition. An analogue, 2‐(2‐5‐methylcarboxyphenylamino)‐3‐methylbenzoic acid, that bound at the catalytic site and caused complete, rather than partial, inhibition of enzyme activity was found. Therefore, we designed and synthesised an extended version of the scaffold on the basis of this observation. The resultant compound, 2,6‐bis‐(2‐carboxyphenylamino)benzoate, is a 40‐fold more potent inhibitor of the enzyme than the original hit and provides direction for further structure‐based drug design.  相似文献   

12.
AS Leal  R Wang  JA Salvador  Y Jing 《ChemMedChem》2012,7(9):1635-1646
A series of ursolic acid ((1S,2R,4aS,6aR,6aS,6bR,8aR,10S,12aR,14bS)‐10‐hydroxy‐1,2,6a,6b,9,9,12a‐heptamethyl‐2,3,4,5,6,6a,7,8,8a,10,11,12,13,14b‐tetradecahydro‐1H‐picene‐4a‐carboxylic acid) derivatives with a 12‐fluoro‐13,28β‐lactone moiety were synthesized using the electrophilic fluorination reagent Selectfluor. The antiproliferative effects of these novel compounds were evaluated in AsPC‐1 pancreatic cancer cells, and the structure–activity relationships (SARs) were evaluated. Of the compounds synthesized, ursolic acid derivatives carrying a heterocyclic ring, such as imidazole or methylimidazole, and cyanoenones were among the more potent inhibitors of AsPC‐1 pancreatic cancer cell growth. 2‐Cyano‐3‐oxo‐12α‐fluoro‐urs‐1‐en‐13,28β‐olide, compound 20 , was the most effective inhibitor with IC50 values of 0.7, 0.9 and 1.8 μM in pancreatic cancer cell lines AsPC‐1, MIA PaCa‐2 and PANC‐1, respectively. This compound also exhibited better antiproliferative activities against breast (MCF7), prostate (PC‐3), hepatocellular (Hep G2) and lung (A549) cancer cell lines, with IC50 values lower than 1 μM . The mechanism of action by which these compounds exert their biological effect was evaluated in AsPC‐1 cells using the most potent inhibitor synthesized, compound 20 . At 1 μM , the cell cycle arrested at the G1 phase with upregulation of p21waf1. Apoptosis was induced at an inhibitor concentration of 8 μM with upregulation of NOXA and downregulation of c‐FLIP. These data indicate that fluorolactone derivatives of ursolic acid have improved antiproliferative activity, acting through arrest of the cell cycle and induction of apoptosis.  相似文献   

13.
14.
To determine the eutomers of potent GluN2B‐selective N‐methyl‐d ‐aspartate (NMDA) receptor antagonists with a 3‐benzazepine scaffold, 7‐benzyloxy‐3‐(4‐phenylbutyl)‐2,3,4,5‐tetrahydro‐1H‐3‐benzazepin‐1‐ols (S)‐ 2 and (R)‐ 2 were separated by chiral HPLC. Hydrogenolysis and subsequent methylation of the enantiomerically pure benzyl ethers of (S)‐ 2 and (R)‐ 2 provided the enantiomeric phenols (S)‐ 3 and (R)‐ 3 [3‐(4‐phenylbutyl)‐2,3,4,5‐tetrahydro‐1H‐3‐benzazepine‐1,7‐diol] and methyl ethers (S)‐ 4 and (R)‐ 4 . All enantiomers were obtained with high enantiomeric purity (≥99.7 % ee). The absolute configurations were determined by CD spectroscopy. R‐configured enantiomers turned out to be the eutomers in receptor binding studies and two‐electrode voltage clamp experiments. The most promising ligand of this compound series is the R‐configured phenol (R)‐ 3 , displaying high GluN2B affinity (Ki=30 nm ), high inhibition of ion flux (IC50=61 nm ), and high cytoprotective activity (IC50=93 nm ). Whereas the eudismic ratio in the receptor binding assay is 25, the eudismic ratio in the electrophysiological experiment is 3.  相似文献   

15.
Natural products containing the α,β‐unsaturated δ‐lactone skeleton have been shown to possess a variety of biological activities. The natural product (?)‐tarchonanthuslactone ( 1 ) possessing this privileged scaffold is a popular synthetic target, but its biological activity remains underexplored. Herein, the total syntheses of dihydropyran‐2‐ones modeled on the structure of 1 were undertaken. These compounds were obtained in overall yields of 17–21 % based on the Keck asymmetric allylation reaction and were evaluated in vitro against eight different cultured human tumor cell lines. We further conducted initial investigation into the mechanism of action of selected analogues. Dihydropyran‐2‐one 8 [(S,E)‐(6‐oxo‐3,6‐dihydro‐2H‐pyran‐2‐yl)methyl 3‐(3,4‐dihydroxyphenyl)acrylate], a simplified analogue of (?)‐tarchonanthuslactone ( 1 ) bearing an additional electrophilic site and a catechol system, was the most cytotoxic and selective compound against six of the eight cancer cell lines analyzed, including the pancreatic cancer cell line. Preliminary studies on the mechanism of action of compound 8 on pancreatic cancer demonstrated that apoptotic cell death takes place mediated by an increase in the level of reactive oxygen species. It appears as though compound 8 , possessing two Michael acceptors and a catechol system, may be a promising scaffold for the selective killing of cancer cells, and thus, it deserves further investigation to determine its potential for cancer therapy.  相似文献   

16.
The application of dynamic ligation screening (DLS), a methodology for fragment‐based drug discovery (FBDD), to the aspartic protease β‐secretase (BACE‐1) is reported. For this purpose, three new fluorescence resonance energy transfer (FRET) substrates were designed and synthesized. Their kinetic parameters (Vmax, KM, and kcat) were determined and compared with a commercial substrate. Secondly, a peptide aldehyde was designed as a chemically reactive inhibitor (CRI) based on the Swedish mutation substrate sequence. Incubation of this CRI with the protease, a FRET substrate, and one amine per well taken from an amine library, which was assembled by a maximum common substructure (MCS) approach, revealed the fragment 3‐(3‐aminophenyl)‐2H‐chromen‐2‐one ( 1 ) to be a competitive BACE‐1 inhibitor that enhanced the activity of the CRI. Irreversibly formed fragment combination products of 1 with the initial peptide sequence were active and confirmed the targeting of the active site through the ethane‐1,2‐diamine isostere. Finally, structure‐assisted combination of fragment 1 with secondary fragments that target the S1 site in hit optimization yielded novel, entirely fragment‐based BACE‐1 inhibitors with up to 30‐fold improved binding affinity. Interactions with the protein were explained by molecular modeling studies, which indicate that the new fragment combinations interact with the catalytic aspartic acid dyad, as well as with the adjacent binding sites required for potency.  相似文献   

17.
To explore the potential of aporphine alkaloids, a novel series of functionalized aporphine analogues with alkoxy (OCH3, OC2H5, OC3H7) functional groups at C1/C2 of ring A and an acyl (COCH3 and COPh) or phenylsulfonyl (SO2Ph and SO2C6H4‐3‐CH3) functionality at the N6 position of ring B of the aporphine scaffold were synthesized and evaluated for their arachidonic acid (AA)‐induced antiplatelet aggregation inhibitory activity and 2,2‐diphenyl‐1‐picrylhydrazyl (DPPH) free‐radical‐scavenging antioxidant activity, with acetylsalicylic acid and ascorbic acid as standard references, respectively. The preliminary structure–activity relationship related to AA‐induced platelet aggregation inhibitory activity results showed that the aporphine analogues 1‐[1,2,9,10‐tetramethoxy‐6a,7‐dihydro‐4H‐dibenzo[de,g]quinolin‐6(5H)‐yl]ethanone and 1‐[2‐(benzyloxy)‐1,9,10‐trimethoxy‐6a,7‐dihydro‐4H‐dibenzo[de,g]quinolin‐6(5H)‐yl]ethanone to be the best compounds of the series. Moreover, the DPPH free‐radical‐scavenging antioxidant activity results demonstrated that the aporphine analogues 1,2,9,10‐tetramethoxy‐6‐(methylsulfonyl)‐5,6,6a,7‐tetrahydro‐4H‐dibenzo[de,g]quinoline, 2‐ethoxy‐1,9,10‐trimethoxy‐6‐(methylsulfonyl)‐5,6,6a,7‐tetrahydro‐4H‐dibenzo[de,g]quinoline, 1‐ethoxy‐2,9,10‐trimethoxy‐6‐(methylsulfonyl)‐5,6,6a,7‐tetrahydro‐4H‐dibenzo[de,g]quinoline, 2,9,10‐trimethoxy‐6‐(methylsulfonyl)‐1‐propoxy‐5,6,6a,7‐tetrahydro‐4H‐dibenzo[de,g]quinoline, and 1‐(benzyloxy)‐2,9,10‐trimethoxy‐6‐(methylsulfonyl)‐5,6,6a,7‐tetrahydro‐4H‐dibenzo[de,g]quinoline were the best compounds of the series. Moreover, in silico molecular docking simulation studies of the active analogues were also performed.  相似文献   

18.
The human enzymes aldose reductase (AR) and AKR1B10 have been thoroughly explored in terms of their roles in diabetes, inflammatory disorders, and cancer. In this study we identified two new lead compounds, 2‐(3‐(4‐chloro‐3‐nitrobenzyl)‐2,4‐dioxo‐3,4‐dihydropyrimidin‐1(2H)‐yl)acetic acid (JF0048, 3 ) and 2‐(2,4‐dioxo‐3‐(2,3,4,5‐tetrabromo‐6‐methoxybenzyl)‐3,4‐dihydropyrimidin‐1(2H)‐yl)acetic acid (JF0049, 4 ), which selectively target these enzymes. Although 3 and 4 share the 3‐benzyluracil‐1‐acetic acid scaffold, they have different substituents in their aryl moieties. Inhibition studies along with thermodynamic and structural characterizations of both enzymes revealed that the chloronitrobenzyl moiety of compound 3 can open the AR specificity pocket but not that of the AKR1B10 cognate. In contrast, the larger atoms at the ortho and/or meta positions of compound 4 prevent the AR specificity pocket from opening due to steric hindrance and provide a tighter fit to the AKR1B10 inhibitor binding pocket, probably enhanced by the displacement of a disordered water molecule trapped in a hydrophobic subpocket, creating an enthalpic signature. Furthermore, this selectivity also occurs in the cell, which enables the development of a more efficient drug design strategy: compound 3 prevents sorbitol accumulation in human retinal ARPE‐19 cells, whereas 4 stops proliferation in human lung cancer NCI‐H460 cells.  相似文献   

19.
We previously found that the p97 cofactor, p47, significantly decreased the potency of some ATP‐competitive p97 inhibitors such as ML240 [2‐(2‐amino‐1H‐benzo[d]imidazol‐1‐yl)‐N‐benzyl‐8‐methoxyquinazolin‐4‐amine] and ML241 [2‐(2H‐benzo[b][1,4]oxazin‐4(3H)‐yl)‐N‐benzyl‐5,6,7,8 tetrahydroquinazolin‐4‐amine]. In this study, we aimed to evaluate inhibitor potencies against two additional p97 cofactor complexes, p97–p37 and p97–Npl4–Ufd1. We focused on these two cofactor complexes, because the protein sequence of p37 is 50 % identical to that of p47, and the Npl4–Ufd1 heterodimer (NU) is the most‐studied p97 cofactor complex. We screened 200 p97 inhibitor analogues for their ability to inhibit the ATPase activity of p97 alone and of p97–p37 and p97–NU complexes. In contrast to the effect of p47, p37 and NU did not significantly change the potencies of most of the compounds. These results highlight differences among p97 cofactors in influencing p97 conformation and effects of inhibitors on p97 complexes, as compared to p97 alone. Continued efforts are needed to advance the development of complex‐specific p97 inhibitors.  相似文献   

20.
The synthesis of 37 1‐(1H‐indol‐3‐yl)ethanamine derivatives, including 12 new compounds, was achieved through a series of simple and efficient chemical modifications. These indole derivatives displayed modest or no intrinsic anti‐staphylococcal activity. By contrast, several of the compounds restored, in a concentration‐dependent manner, the antibacterial activity of ciprofloxacin against Staphylococcus aureus strains that were resistant to fluoroquinolones due to overexpression of the NorA efflux pump. Structure–activity relationships studies revealed that the indolic aldonitrones halogenated at position 5 of the indole core were the most efficient inhibitors of the S. aureus NorA efflux pump. Among the compounds, (Z)‐N‐benzylidene‐2‐(tert‐butoxycarbonylamino)‐1‐(5‐iodo‐1H‐indol‐3‐yl)ethanamine oxide led to a fourfold decrease of the ciprofloxacin minimum inhibitory concentration against the SA‐1199B strain when used at a concentration of 0.5 mg L ?1. To the best of our knowledge, this activity is the highest reported to date for an indolic NorA inhibitor. In addition, a new antibacterial compound, tert‐butyl (2‐(3‐hydroxyureido)‐2‐(1H‐indol‐3‐yl)ethyl)carbamate, which is not toxic for human cells, was also found.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号