首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
At present, most synthetic organic materials are produced from fossil carbon feedstock that is regenerated over time scales of millions of years. Biobased alternatives can be rapidly renewed in cradle-to-cradle cycles (1-10 years). Such materials extend landfill life and decrease undesirable impacts due to material persistence. This work develops a LCA for synthesis of polyhydroxybutyrate (PHB) from methane with subsequent biodegradation of PHB back to biogas (40-70% methane, 30-60% carbon dioxide). The parameters for this cradle-to-cradle cycle for PHB production are developed and used as the basis for a cradle-to-gate LCA. PHB production from biogas methane is shown to be preferable to its production from cultivated feedstock due to the energy and land required for the feedstock cultivation and fermentation. For the PHB-methane cycle, the major challenges are PHB recovery and demands for energy. Some or all of the energy requirements can be satisfied using renewable energy, such as a portion of the collected biogas methane. Oxidation of 18-26% of the methane in a biogas stream can meet the energy demands for aeration and agitation, and recovery of PHB synthesized from the remaining 74-82%. Effective coupling of waste-to-energy technologies could thus conceivably enable PHB production without imported carbon and energy.  相似文献   

2.
The use of algae as a feedstock for biodiesel production is a rapidly growing industry, in the United States and globally. A life cycle assessment (LCA) is presented that compares various methods, either proposed or under development, for algal biodiesel to inform the most promising pathways for sustainable full-scale production. For this analysis, the system is divided into five distinct process steps: (1) microalgae cultivation, (2) harvesting and/or dewatering, (3) lipid extraction, (4) conversion (transesterification) into biodiesel, and (5) byproduct management. A number of technology options are considered for each process step and various technology combinations are assessed for their life cycle environmental impacts. The optimal option for each process step is selected yielding a best case scenario, comprised of a flat panel enclosed photobioreactor and direct transesterification of algal cells with supercritical methanol. For a functional unit of 10 GJ biodiesel, the best case production system yields a cumulative energy demand savings of more than 65 GJ, reduces water consumption by 585 m(3) and decreases greenhouse gas emissions by 86% compared to a base case scenario typical of early industrial practices, highlighting the importance of technological innovation in algae processing and providing guidance on promising production pathways.  相似文献   

3.
Ethanol can be produced via an intracellular photosynthetic process in cyanobacteria (blue-green algae), excreted through the cell walls, collected from closed photobioreactors as a dilute ethanol-in-water solution, and purified to fuel grade ethanol. This sequence forms the basis for a biofuel production process that is currently being examined for its commercial potential. In this paper, we calculate the life cycle energy and greenhouse gas emissions for three different system scenarios for this proposed ethanol production process, using process simulations and thermodynamic calculations. The energy required for ethanol separation increases rapidly for low initial concentrations of ethanol, and, unlike other biofuel systems, there is little waste biomass available to provide process heat and electricity to offset those energy requirements. The ethanol purification process is a major consumer of energy and a significant contributor to the carbon footprint. With a lead scenario based on a natural-gas-fueled combined heat and power system to provide process electricity and extra heat and conservative assumptions around the ethanol separation process, the net life cycle energy consumption, excluding photosynthesis, ranges from 0.55 MJ/MJ(EtOH) down to 0.20 MJ/ MJ(EtOH), and the net life cycle greenhouse gas emissions range from 29.8 g CO?e/MJ(EtOH) down to 12.3 g CO?e/MJ(EtOH) for initial ethanol concentrations from 0.5 wt % to 5 wt %. In comparison to gasoline, these predicted values represent 67% and 87% reductions in the carbon footprint for this ethanol fuel on a energy equivalent basis. Energy consumption and greenhouse gas emissions can be further reduced via employment of higher efficiency heat exchangers in ethanol purification and/ or with use of solar thermal for some of the process heat.  相似文献   

4.
Livestock production has been challenged as a large contributor to climate change, and carbon footprint has become a widely used measure of cattle environmental impact. This analysis of fifteen beef grazing systems in Uruguay quantifies the range of variation of carbon footprint, and the trade-offs with other relevant environmental variables, using a partial life cycle assessment (LCA) methodology. Using carbon footprint as the primary environmental indicator has several limitations: different metrics (GWP vs. GTP) may lead to different conclusions, carbon sequestration from soils may drastically affect the results, and systems with lower carbon footprint may have higher energy use, soil erosion, nutrient imbalance, pesticide ecotoxicity, and impact on biodiversity. A multidimensional assessment of sustainability of meat production is therefore needed to inform decision makers. There is great potential to improve grazing livestock systems productivity while reducing carbon footprint and other environmental impacts, and conserving biodiversity.  相似文献   

5.
在中式浓香特色烟叶生产中,为替代化学肥料和农药,在潍坊市的诸城、安丘和高密3个产烟县(市)进行了沼液在烟叶生产上的使用效果试验。初步结果表明,沼液能够促进烟苗生长,提高烟苗茎高、茎围和根重,同时可以改善烤烟株高、叶数和腰叶面积等农艺性状;沼液处理能较好地改善烟叶等级结构,提高烟叶产量、产值、均价和上等烟比例,平均分别提高了4.02%、8.59%、4.38%和8.15%;沼液对烟草病毒病、黑胫病和赤星病有较好的防治效果,病害发病率分别降低了59.96%、55.56%和19.05%,对烟蚜也有一定的防治效果,沼液处理后,烟蚜虫口数量明显下降。综合分析,沼液对促进烟草生长、防治烟草病虫害、提高烟草质量有积极作用,具有一定应用前景。  相似文献   

6.
目的 探究施用沼液对槟榔芋根区土壤理化性质及重金属含量的影响。方法 采集连续施用沼液6年和未施用沼液的槟榔芋种植地块土壤, 测定土壤中Cu、Zn、Pb、Cd、Cr、Hg、As共7种重金属的含量并进行污染风险评价, 同时测定土壤的基本理化指标, 分析土壤中重金属含量与土壤理化性质间的相关性。结果 长期沼液灌溉会显著增加槟榔芋根区土壤中有机质、碱解氮和速效钾含量, 但也会导致土壤中Cu、Zn、Pb、Cd、Cr显著累积, 尤其Cu和Zn含量均超出了GB 15618—2018中规定的风险筛选值。连续施用沼液增加了土壤重金属的综合污染水平和潜在生态风险, 总体呈现轻度污染等级, 具有中等水平的潜在生态风险, 其中Cu对综合污染水平的贡献率最大, Cd和Hg对综合潜在生态风险的贡献率最大。土壤中Cu、Zn、Pb、Cd、Cr之间可能存在污染同源性, 其含量基本与土壤有机质、碱解氮和速效钾呈极显著正相关, 与速效磷呈显著负相关。结论 沼液还田虽然会提高槟榔芋根区土壤整体养分状况, 但长期沼液灌溉也增加了土壤重金属的污染风险, 尤其是Cu、Cd、Hg可能引起的污染问题要引起重视。  相似文献   

7.
Cement production is an environmentally relevant process responsible for 5% of total anthropogenic carbon dioxide emissions and 7% of industrial fuel use. In this study, life cycle assessment is used to evaluate improvement potentials in the cement production process in Europe and the USA. With a current fuel substitution rate of 18% in Europe and 11% in the USA, both regions have a substantial potential to reduce greenhouse gas emissions and save virgin resources by further increasing the coprocessing of waste fuels. Upgrading production technology would be particularly effective in the USA where many kiln systems with very low energy efficiency are still in operation. Using best available technology and a thermal substitution rate of 50% for fuels, greenhouse gas emissions could be reduced by 9% for Europe and 18% for the USA per tonne of cement. Since clinker production is the dominant pollution producing step in cement production, the substitution of clinker with mineral components such as ground granulated blast furnace slag or fly ash is an efficient measure to reduce the environmental impact. Blended cements exhibit substantially lower environmental footprints than Portland cement, even if the substitutes feature lower grindability and require additional drying and large transport distances. The highest savings in CO(2) emissions and resource consumption are achieved with a combination of measures in clinker production and cement blending.  相似文献   

8.
为了研究沼液药肥一体化水剂配方和功能。方法:首先将磁石和石膏与沼液混合,再加硅藻土净化;然后以水不溶物含量为指标,通过正交试验筛选氮磷钾矿质养分的最佳添加量,将之与小檗碱配合制备成沼液药肥一体化水剂;测定其对番茄灰霉病菌的抑制效果及对白菜生长的影响。结果表明:沼液净化后,其中铁、锰、锌含量增加,铜离子及重金属离子含量明显降低;以0.01%小檗碱、17%尿素、9%磷酸二氢钾、10%硝酸钾和8%黄腐酸(沼液补至100%)制备的沼液药肥一体化水剂,其N:P2O5:K2O质量比:8.51:4.18:7.87,N、P2O5、K2O总和即养分含量为205.6 g/L,能满足作物对养分的需求。抑菌实验表明,沼液药肥一体化水剂对番茄灰霉病菌有较强抑制作用,EC50为12.12 μg/mL,是小檗碱水剂(抑制番茄灰霉病菌的EC50为398.11 μg/mL)EC50的3.04%。沼液药肥一体化水剂稀释150倍后(即养分含量为1.67 g/L)喷施白菜能有效加速植株生长。结论:该研究为提高沼液抑菌效果和肥效,开发以沼液和小檗碱为主要原料的药肥一体化水剂提供科学依据。  相似文献   

9.
随着我国科技与社会的不断发展,各行各业在生产与进步中对我国土壤环境造成了一定程度的污染,土壤环境监测工作需做好准确的质量控制,才能为后续改善工作提供数据参考.因此通过分析土壤环境监测中的问题以及各个流程的质量控制措施,可以为有关部门提升土壤环境监测工作的准确性和代表性提供技术支撑.  相似文献   

10.
Environmental impacts due to engineered nanomaterials arise both from releases of the nanomaterials themselves as well as from their synthesis. In this work, we employ the USEtox model to quantify and compare aquatic ecotoxicity impacts over the life cycle of carbon nanotubes (CNTs). USEtox is an integrated multimedia fate, transport, and toxicity model covering large classes of organic and inorganic substances. This work evaluates the impacts of non-CNT emissions from three methods of synthesis (arc ablation, CVD, and HiPco), and compares these to the modeled ecotoxicity of CNTs released to the environment. Parameters for evaluating CNT ecotoxicity are bounded by a highly conservative "worst case" scenario and a "realistic" scenario that draws from existing literature on CNT fate, transport, and ecotoxicity. The results indicate that the ecotoxicity impacts of nanomaterial production processes are roughly equivalent to the ecotoxicity of CNT releases under the unrealistic worst case scenario, while exceeding the results of the realistic scenario by 3 orders of magnitude. Ecotoxicity from production processes is dominated by emissions of metals from electricity generation. Uncertainty exists for both production and release stages, and is modeled using a combination of Monte Carlo simulation and scenario analysis. The results of this analysis underscore the contributions of existing work on CNT fate and transport, as well as the importance of life cycle considerations in allocating time and resources toward research on mitigating the impacts of novel materials.  相似文献   

11.
The potential environmental threats posed by freshwater withdrawal and mine water discharge are some of the main drivers for the mining industry to improve water management. The use of multiple sources of water supply and introducing water reuse into the mine site water system have been part of the operating philosophies employed by the mining industry to realize these improvements. However, a barrier to implementation of such good water management practices is concomitant water quality variation and the resulting impacts on the efficiency of mineral separation processes, and an increased environmental consequence of noncompliant discharge events. There is an increasing appreciation that conservative water management practices, production efficiency, and environmental consequences are intimately linked through the site water system. It is therefore essential to consider water management decisions and their impacts as an integrated system as opposed to dealing with each impact separately. This paper proposes an approach that could assist mine sites to manage water quality issues in a systematic manner at the system level. This approach can quantitatively forecast the risk related with water quality and evaluate the effectiveness of management strategies in mitigating the risk by quantifying implications for production and hence economic viability.  相似文献   

12.
Utilizing domestically produced cellulose-derived ethanol for the light-duty vehicle fleet can potentially improve the environmental performance and sustainability of the transport and energy sectors of the economy. A life cycle assessment model was developed to examine environmental implications of the production and use of ethanol in automobiles in Ontario, Canada. The results were compared to those of low-sulfur reformulated gasoline (RFG) in a functionally equivalent automobile. Two time frames were evaluated, one near-term (2010), which examines converting a dedicated energy crop (switchgrass) and an agricultural residue (corn stover) to ethanol; and one midterm (2020), which assumes technological improvements in the switchgrass-derived ethanol life cycle. Near-term results show that, compared to a RFG automobile, life cycle greenhouse gas (GHG) emissions are 57% lower for an E85-fueled automobile derived from switchgrass and 65% lower for ethanol from corn stover, on a grams of CO2 equivalent per kilometer basis. Corn stover ethanol exhibits slightly lower life cycle GHG emissions, primarily due to sharing emissions with grain production. Through projected improvements in crop and ethanol yields, results for the mid-term scenario show that GHG emissions could be 25-35% lower than those in 2010 and that, even with anticipated improvements in RFG automobiles, E85 automobiles could still achieve up to 70% lower GHG emissions across the life cycle.  相似文献   

13.
《Journal of dairy science》2023,106(5):3268-3286
Efficient management of N and P on dairy farms is critical for farm profitability and environmental stewardship. Annual farm-gate nutrient mass balance (NMB) assessments can be used to determine the nutrient-use efficiency of farms, set efficiency targets, and monitor the effect of management changes with minimal inputs required. In New York, feasible N and P balances have been developed as benchmarks for dairy farm NMB, alongside key performance indicators (KPI) that serve as predictors for high NMB. Here, 3 yr of NMB data from 47 farms were used to evaluate the main drivers of N and P balances and identify additional KPI. From the 141 farm records, 26% met both the feasible N balances per hectare and per megagram of milk produced. For P, 53% of the records met both benchmarks. Imports, rather than exports, drove NMB primarily by feed and fertilizer purchases, consistent with earlier findings. Linear regression analysis showed that a selection of KPI currently used, particularly animal density, nutrient-use efficiency, and the amount of home-grown feed, explained a large portion of variation in NMB. Heifer-to-cow ratio and the relative proportion of various forage crops may provide further insight into the drivers of feed and fertilizer imports and ultimately farm-gate NMB. This study provides avenues toward a better assessment of whole-farm nutrient management and means for farms to communicate progress to stakeholders and consumers.  相似文献   

14.
This analysis presents a comparison of life-cycle GHG emissions from synthetic paraffinic kerosene (SPK) produced as jet fuel substitute from jatropha curcas feedstock cultivated in Brazil against a reference scenario of conventional jet fuel. Life cycle inventory data are derived from surveys of actual Jatropha growers and processors. Results indicate that a baseline scenario, which assumes a medium yield of 4 tons of dry fruit per hectare under drip irrigation with existing logistical conditions using energy-based coproduct allocation methodology, and assumes a 20-year plantation lifetime with no direct land use change (dLUC), results in the emissions of 40 kg CO?e per GJ of fuel produced, a 55% reduction relative to conventional jet fuel. However, dLUC based on observations of land-use transitions leads to widely varying changes in carbon stocks ranging from losses in excess of 50 tons of carbon per hectare when Jatropha is planted in native cerrado woodlands to gains of 10-15 tons of carbon per hectare when Jatropha is planted in former agro-pastoral land. Thus, aggregate emissions vary from a low of 13 kg CO?e per GJ when Jatropha is planted in former agro-pastoral lands, an 85% decrease from the reference scenario, to 141 kg CO?e per GJ when Jatropha is planted in cerrado woodlands, a 60% increase over the reference scenario. Additional sensitivities are also explored, including changes in yield, exclusion of irrigation, shortened supply chains, and alternative allocation methodologies.  相似文献   

15.
Global warming is a worldwide issue with its evident impact across a wide range of systems and sectors. It is caused by a number of greenhouse gases (GHGs) emissions, in which food system has made up of a large part. Recently, reduction of GHG emissions has become an urgent issue to be resolved in the food system. Many governments and organizations are making great endeavors to alleviate the adverse effect of this phenomenon. In this review, methods to reduce the carbon footprint within the life cycle of a food system are presented from the technical, consumption behavior and environmental policies perspectives. The whole food system including raw material acquisition, processing, packaging, preservation, transportation, consumption, and disposal are covered. Improving management techniques, and adopting advanced technology and equipment are critical for every stage of a food system. Rational site selection is important to alleviate the influence of land use change. In addition, environmental choices of packaging stage, reduction in refrigeration dependence, and correct waste treatment are essential to reduce the total carbon footprint of the production. However, only technical methods cannot radically reverse the trend of climate change, as consumption behaviors present a great deal of influence over climate change. Appropriate purchase patterns and substitution within food product categories by low carbon products can reduce GHG emissions. Development of methods to calculate the carbon footprint of every kind of food and its processing technology enable people to make environmental choice. Policy can shape and cultivate the new code of consumption and influence the direction of emerging technology and science. From political perspectives, government intervention and carbon offset are common tools, especially for carbon tax and a real or implicit price of carbon. Finally, by mitigating the methodologies described above, the rate and magnitude of climate changes can be also reduced to some extent.  相似文献   

16.
金旭  刘方  杜嬛  华超  公旭中  张秀芹  汪滨 《纺织学报》2022,43(3):201-209
针对纳米零价铁(nZVI)复合材料存在易团聚和难分离回收等缺陷,导致其降解效率下降、使用寿命变短等问题,首先介绍了nZVI的制备方法及负载型nZVI基材料在治理土壤污染和水体污染等领域的最新研究成果,分析了nZVI去除污染物的反应原理;重点总结归纳了聚丙烯酸/聚乙烯醇复合纳米纤维膜、壳聚糖复合纳米纤维膜、聚苯胺纳米纤维...  相似文献   

17.
Organic agriculture continues to expand in the United States, both in total hectares and market share. However, management practices used by dairy organic producers, and their resulting environmental impacts, vary across farms. This study used a partial life cycle assessment approach to estimate the effect of different feeding strategies and associated crop production on greenhouse gas emissions (GHG) from Wisconsin certified organic dairy farms. Field and livestock-driven emissions were calculated using 2 data sets. One was a 20-yr data set from the Wisconsin Integrated Cropping System Trial documenting management inputs, crop and pasture yields, and soil characteristics, used to estimate field-level emissions from land associated with feed production (row crop and pasture), including N2O and soil carbon sequestration. The other was a data set summarizing organic farm management in Wisconsin, which was used to estimate replacement heifer emission (CO2 equivalents), enteric methane (CH4), and manure management (N2O and CH4). Three combinations of corn grain (CG) and soybean (SB) as concentrate (all corn = 100% CG; baseline = 75% CG + 25% SB; half corn = 50% CG + 50% SB) were assigned to each of 4 representative management strategies as determined by survey data. Overall, GHG emissions associated with crop production was 1,297 ± 136 kg of CO2 equivalents/t of ECM without accounting for soil carbon changes (ΔSC), and GHG emission with ΔSC was 1,457 ± 111 kg of CO2 equivalents/t of ECM, with greater reliance on pasture resulting in less ΔSC. Higher levels of milk production were a major driver associated with reduction in GHG emission per metric tonne of ECM. Emissions per metric tonne of ECM increased with increasing proportion of SB in the ration; however, including SB in the crop rotation decreased N2O emission per metric tonne of ECM from cropland due to lower applications of organically approved N fertility inputs. More SB at the expense of CG in the ration reduced enteric CH4 emission per metric tonne of ECM (because of greater dietary fat content) but increased N2O emission per metric tonne of ECM from manure (because of greater N content). An increased reliance on pasture for feed at the expense of grain resulted in decreased in milk production, subsequently leading to substantially higher emissions per metric tonne of ECM.  相似文献   

18.
Wind energy is a fast-growing and promising renewable energy source. The investment costs of wind turbines have decreased over the years, making wind energy economically competitive to conventionally produced electricity. Size scaling in the form of a power law, experience curves and progress rates are used to estimate the cost development of ever-larger turbines. In life cycle assessment, scaling and progress rates are seldom applied to estimate the environmental impacts of wind energy. This study quantifies whether the trend toward larger turbines affects the environmental profile of the generated electricity. Previously published life cycle inventories were combined with an engineering-based scaling approach as well as European wind power statistics. The results showed that the larger the turbine is, the greener the electricity becomes. This effect was caused by pure size effects of the turbine (micro level) as well as learning and experience with the technology over time (macro level). The environmental progress rate was 86%, indicating that for every cumulative production doubling, the global warming potential per kWh was reduced by 14%. The parameters, hub height and rotor diameter were identified as Environmental Key Performance Indicators that can be used to estimate the environmental impacts for a generic turbine.  相似文献   

19.
Greenhouse gas (GHG) emissions were evaluated from crop production through the on-farm portion of the milk supply chain for five production regions in the USA derived from publicly available data and from 536 surveys of farm operations collected from dairy operations nationwide. The production weighted national average footprint at the farm gate was 1.23 kg carbon dioxide equivalent (CO2e) per kg of fat and protein corrected milk (fat, 4%; protein 3.3%). Regional differences in GHG emissions per kg milk produced can be primarily traced to differences in production and management practices. Feed-to-milk conversion efficiency is shown to be the single most important explanatory variable, followed by choice of manure management technology. While there is no one-size-fits-all solution, GHG emissions reduction opportunities exist across the spectrum of dairy management options. However, as with all decisions, it is important to weigh potential trade-offs with other environmental and economic impacts.  相似文献   

20.
服装生产流程管理是企业经营的重要环节,涉及到服装企业从产品开发、生产加工、到组织架构、市场营销等各个链段,环环相扣,相互制约。完善的生产流程管理不仅会影响到最终成品质量,而且会影响服装企业经济效益,乃至企业的未来发展。随着市场竞争的日益激烈,服装产品越来越向小批量、多品种、短周期、个性化、品牌化方向发展,对服装企业的生产过程管理提出了更高的要求。良好、完善的企业生产流程管理,是服装企业降低成本,实施精益生产,达到及时制造、减少故障、降低费用、零缺陷、零库存的目标。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号