首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
The zinc uptake and posterior release by an aquatic bryophyte—Fontinalis antipyretica L. Ex Hedw.—was experimentally studied in laboratory exposing the plants to different zinc concentrations in the range, 1.0–5.0 mg l−1, for a 144 h contamination period, and then exposed to metal-free water for a 120 h decontamination period. The experiments were carried out in perfectly mixed contactors at controlled illumination, using mosses picked out in February 1997, with a background initial zinc concentration of 263 mg g−1 (dry wt.). A first-order mass transfer kinetic model was fitted to the experimental data to determine the uptake and release constants, k1 and k2, the zinc concentration in mosses at the end of the uptake period, Cmu, and at the equilibrium, for the contamination and decontamination stages, Cme and Cmr, respectively. A bioconcentration factor, BCF=k1/k2 (zinc concentration in the plant, dry wt./zinc concentration in the water) was determined. A biological elimination factor defined as BEF=1−Cmr/Cmu was also calculated. BCF decreases from about 4500 to 2950 as Zn concentration in water increases from 1.05 to 3.80 mg l−1. BEF is approximately constant and equal to 0.80. Comparing Zn and Cu accumulation by Fontinalis antipyretica, it was concluded that the uptake rate for Zn (145 h−1) is much lower than for Cu (628 h−1) and the amount retained by the plant decreased by a factor of about seven.  相似文献   

2.
Use of moss-bags for monitoring heavy metals in rivers   总被引:1,自引:0,他引:1  
Methods were developed for the use of aquatic mosses in mesh bags to monitor heavy metal pollution by measuring concentrations in 2-cm tips of the widespread species, Rhynchostegium riparioides and (in one experiment) Fontinalis antipyretica. Intermittent pollution events were simulated by transporting moss from streams with low concentrations to ones with high concentrations of zinc, cadmium and lead and also in one case back from high to a low concentration. Factors affecting accumulation were also studied; these included position inside bag, density of packing, mesh size and differences between moss on boulders and in bags. In general these factors influenced accumulation only slightly over a wide range of treatments. The influence of time period for which the moss was exposed to pollution on subsequent loss was tested for zinc: a greater proportion was lost over the first 2 h in moss exposed for 1 h than 24 h. The potential for using the moss-bag technique is discussed: it is robust and convenient to handle and is recommended for monitoring heavy metals in stretches of rivers where there are no natural moss populations.  相似文献   

3.
An unbiassed statistical method was developed to evaluate kinetic parameters in the biological oxidation of wastewaters. Through the statistical analyses of the biological oxidation kinetics, it was shown that the kinetic equations satisfactorily described the bacterial growth and substrate removal kinetics where X is biomass concentration, S is substrate concentration, t is time, a is cell yield coefficient, kd is cell decay coefficient, Ks is Michaelis-Menten constant, and k is substrate removal rate coefficient. The coefficients Ks and a changed with temperature insignificantly while k and kd were closely related to it. The temperature independent coefficients Ks and a were estimated to be 236 mg 1−1 (standard deviation, σ = 70 mg 1−1) and 1.21 (σ = 0.06) respectively for phenol, and 2330 mg 1−1 (σ = 1410 mg 1−1) and 1.25 (σ = 0.45) respectively for methanol based on total organic carbon (TOC) and volatile suspended solids (VSS). The oxygen utilization rate can be formulated as where Rr is the oxygen utilization rate (mg 1−1 O2 time−1), as′ is a coefficient designating oxygen requirement per substrate utilized, and b′ is a coefficient designating oxygen requirement per biomass for endogeneous respiration. The coefficient a′ was 1.39 for phenol and 2.23 for methanol, and b′ was 1.42 kd for both substances based on TOC and VSS.  相似文献   

4.
The biological treatment of a high-strength p-nitrophenol (PNP) wastewater in an aerobic Sequencing Batch Reactor (SBR) has been studied. A specific operational strategy was applied with the main aim of developing a K-strategist PNP-degrading activated sludge. The enrichment of a K-strategist microbial population was performed using a non-acclimated biomass coming from a municipal WWTP as inoculum, and following a feeding strategy in which the PNP-degrading biomass was under endogenous conditions during more than 50% of the aerobic reaction phase. Hundred per cent of PNP removal was achieved in the whole operating period with a maximum specific PNP loading rate of 0.26 g PNP g−1 VSS d−1. A kinetic characterization of the obtained PNP-degrading population was carried out using respirometry assays in specifically designed batch tests. With the experimental data obtained a kinetic model including substrate inhibition has been used to describe the time-course of the PNP concentration and specific oxygen uptake rate (SOUR), simultaneously. The kinetic parameters obtained through optimization, validated with an additional respirometric test, were kmax = 1.02 mg PNP mg−1 COD d−1, Ks = 1.6 mg PNP L−1 and Ki = 54 mg PNP L−1. The values obtained for the Ks and kmax are lower than those reported in the literature for mixed populations, meaning that the biomass is a K-strategist type, and therefore demonstrating the success of the operational strategy imposed to obtain such a K-strategist population. Moreover, our measured Ki value is higher than those reported by most of the bibliographic references; therefore the acclimated activated sludge used in this work was evidently more adapted to PNP inhibition than the other reported cultures.  相似文献   

5.
Tellinid clams Macoma balthica were sampled every 2 months for 2.5 years at two locations from the Westerschelde estuary (The Netherlands) and submitted to in vitro short-term exposure to Cd, Cu and Zn. Total and heat-stable cytosolic metal concentrations have been measured before and after exposure to study the effects of the sampling season on metal uptake by the bivalve. We observed much higher uptakes of Cd and, to a lesser extent, Cu in winter than in summer, while Zn appears to be constantly regulated. These phenomena are amplified in the cytosol, especially for Cd, a non-essential element, for which the concentrations after exposure can reach 35–45 μg·g−1 (dry wt.) in winter, but only a maximum of 0.5 μg·g−1 in summer, all natural values being between 0.01 and 0.1 μg·g−1 on average. The contents (μg) of the various elements, either at the total or at the cytosolic level, are not constant, hence showing that the seasonal body weight fluctuation of the clams (dilution or concentration effect) is not the only parameter responsible for the metal uptake variability. Furthermore, we have shown that the proportion of cytosolic metal is not constant, but increases with the absolute cytosolic concentration up to 35–40. Therefore, the cytosolic phase of the cells plays a growing role in Cd, Cu and Zn storage as long as their total concentration increases.  相似文献   

6.
A Lavoie  J de la Noüe 《Water research》1985,19(11):1437-1442
Algal cultures of Scenedesmus obliquus at low concentrations (0.1–0.2 g dry wt l−1) provide adequate biological tertiary treatment of wastewaters. This research was aimed at studying the possibility of increasing the system performance by using hyperconcentrated cultures of S. obliquus (up to 2.6 g dry wt l−1) at the laboratory scale. The algal culture grown on secondary effluent was first chemically flocculated with chitosan (30 mg l−1) and decanted; the sedimented culture (5 g dry wt l−1) was then resuspended in secondary effluent to obtain algal suspensions at various concentrations, the performance of which was compared to that of a control culture (0.13 g dry wt l−1). The rate of exhaustion of nitrogen (N-NH4+) was proportional to the algal concentration and a complete removal could be obtained within 15 min (at 2.6 g dry wt algae l−1); this result compares favorably to the 2.5 h or so required by the control culture. The unit uptake rate for nitrogen (N-NH4+) had a tendency to increase with the algal concentration, whereas that of phosphorus (P-PO43−) showed the opposite relationship. Considering the results obtained, it appears that hyperconcentrated algal cultures have a high potential for the tertiary treatment of wastewaters; a significant reduction of pond surface for large scale operations can be anticipated.  相似文献   

7.
Cadmium contents in the water and the sediment samples collected from the Tama River and several branches were measured. Cadmium (above 0.005mgl−1) was detected in only four of the water samples, while the sediment samples showed cadmium content of 1.0–9.8 μg g−1 dry sediment. Cadmium concentration in the sediments of the main stream was correlated against ignition loss of the samples and it was found that 1 g of ignition loss (organic matter) corresponded to 35 μg of cadmium.The batch adsorption experiment in the laboratory using an aqueous solution of cadmium for 14 sediment samples with a higher concentration of cadmium indicated that the amount adsorbed by the sediment is highly dependent on the ignition loss. The amount adsorbed on unit mass of ignition loss qIL could be correlated by a Freundlich-type equilibrium relation as where C is the equilibrium concentration in the aqueous phase ranging between 7 × 10−3 and 10 mg l−1, while kIL and n are equilibrium constants.The adsorption rate measurement showed that the intraparticle diffusion coefficient of cadmium in the sediment was about 1.1 × 10−6 cm2s−1, which is of a reasonable order of magnitude assuming the pore diffusion mechanism inside the particle.The results suggest that suspended solid particles of high organic content in flowing water contribute significantly to the transport of cadmium along the river.  相似文献   

8.
Bulking by Sphaerotilus natans has been attributed to several factors such as low dissolved oxygen in the aeration basin, wastes with high C:N ratios and phosphorus limitation; however, the occurrence of bulking has been reported in fruit, vegetable, meat and poultry wastewaters in which the ratio C:N is variable.Growth of S. natans was analyzed in a model system of a food industry wastewater (potato processing waste) that was characterized by HPLC determining that citric acid was the most important identified component. The effect of several carbon sources on S. natans growth was also studied; different C:N ratios were tested in a continuous culture system (chemostat). This strain grew in a mineral medium with citric acid as a sole carbon source, in spite of the contradictory results found in literature. Chemostat studies showed that the medium was carbon-limited when C:N ratios <19 mgCOD (mgN-NH3)−1. Monod kinetic growth coefficients, determined for this strain in chemostat were: maximum specific growth rate, μmax=0.301 h−1; Monod constant, KS=4.6 mgCOD l−1; true biomass growth yield, YTX/S=0.490 mgVSS (mgCOD)−1; endogenous decay rate, kd=0.011 h−1 and maintenance coefficient, mS=0.022 mgCOD (mgVSS)−1 h−1. The obtained parameters were compared with literature data and the effect of glucose and citric acid as carbon sources was discussed; these parameters are useful in modeling the growth of S. natans in potato processing wastewaters (or in other effluents under carbon-limiting conditions) especially when citrate is the main component and can be used to control filamentous bulking by metabolic or kinetic selection.  相似文献   

9.
A partial budget is presented of the zinc, cadmium and lead entering the Derwent Reservoir. The mean levels in the water column upstream of the site of inflow are: Zn, 0.216 mg 1−1 ; Cd, 0.003 mg 1−1; Pb, 0.065 mg 1−1; the levels after passage through the 4.1 km2 reservoir fall by: Zn, 70.3%; Cd, 98.3%; Pb, 89.2%. Most of these metals are deposited in sediments, the mean values for which are: Zn, 1035 μg−1; Cd, 13μg−1; Pb, 827μg−1. Lead, a higher percentage of which occurs as particulate material, is deposited more rapidly than zinc; this effect is especially obvious when streaming of colder water along the bottom of the reservoir takes place at the time of floods. Macroscopic plants are only occasional in this reservoir, due perhaps in part to heavy metal toxicity. Of the two most common submerged species, Nitella flexilis probably accumulates almost all of its metal content directly from the water, but the data suggest that sediments are a source of some of the heavy metals accumulated by Glyceria fluitans.  相似文献   

10.
Role of aquatic plants in wastewater treatment by artificial wetlands   总被引:12,自引:0,他引:12  
This report describes investigations using artificial wetlands which quantitatively assess the role of each of three higher aquatic plant types, Scirpus validus (bulrush), Phragmites communis (common reed) and Typha latifola (cattail), in the removal of nitrogen (via sequential nitrification-denitrification), BOD and TSS from primary municipal wastewaters. During the period August 1983–December 1984, the mean ammonia concentration of 24.7 mg l−1 in the primary wastewater inflow (hydraulic application rate = 4.7 cm day−1) was reduced to mean effluent levels of 1.4 mg l−1 for the bulrush bed, 5.3 mg l−1 for the reed bed and 17.7 mg l−1 for the cattail bed, as compared to a mean value of 22.1 mg l−1 for the unvegetated (control) bed. For all three vegetated beds, the mean effluent ammonia values were significantly below that for the unvegetated bed and for the inflow. The bulrushes and reeds (in that order) proved to be superior at removing ammonia, both with mean effluent levels significantly below that for the cattail bed. The high ammonia-N (and total N) removal efficiencies shown by the bulrush and reed beds are attributed to the ability of these plants to translocate O2 from the shoots to the roots. The oxidized rhizosphere so formed stimulates sequential nitrification-denitrification. Similarly BOD removal efficiencies were highest in the bulrush and reed beds, both with mean effluent BOD levels (5.3 and 22.2 mg l−1, respectively) significantly below that for the unvegetated bed (36.4 mg l−1) and equal to or better than secondary treatment quality (30 mg l−1). Our results demonstrate that higher aquatic plants can indeed play a significant role in secondary and advanced (N removal) wastewater treatment by wetland systems, a role that is completely distinct from that associated with their pollutant uptake capacity.  相似文献   

11.
By a simulation method, the reaeration (k2) and biodegradation (k1) constants for a shallow turbulent stream in Ibadan have been estimated at 11.45 day−1 and 3.33 day−1 respectively. The high F-factor (k2/k1) of 3.44 confirmed the fairly high self-purification capacity of the stream suggested by a comparison of the water quality of the polluted stream at several points downstream of the pollution source.  相似文献   

12.
The effects of temperature, pH, salinity, and nutrients on bacterial activities were investigated and evaluated using a statistical method. The substrate utilization rate coefficient (k) decreased as pH deviated from neutral and as salinity increased, and the unfavorable pH and salinity alleviated the temperature effect on k. The modified Arrhenius equation, kT2 = kT1 θ(T2−T1), was not effective in describing the temperature effect on k: the temperature coefficient (θ) ranged between 1.0–1.4 depending on the temperature range, pH, salinity, and substance (phenol or methanol). The endogeneous respiration activity was affected by various environmental factors such as pH, temperature, and salinity; however, the cell decay coefficient (kd) turned out to be correlated to a single parameter, k. Thus, kd = 0.066 k0.87 and kd = 0.0115 k0.634, where k and kd are based on the unit of h−1, were proposed for the prediction of cell decay coefficient for phenol and methanol acclimated activated sludge, respectively. In batch treatment of 770 mg l−1 of phenol and 1000 mg l−1 of methanol as TOC, nitrogen and phosphorus did not have any recognizable effect on k, while trace elements such as Fe2+, Mg2+, Mn2+, Ca2+, and Zn2+, etc. showed a slightly perceptible effect on it. The absence of extra-cellular nitrogen and phosphorus resulted in a greater cell yield; however, the cells in this condition decayed more rapidly than normal cells. The primary factor affecting the substrate decomposition rate in natural systems was pH: phenol decomposition resulted in a considerable decrease in pH so that the buffering capacity of the water was the most important factor, and methanol decomposition did not affect pH significantly so that the initial pH of the water was the most important factor. An initial lag phase was observed in 8 out of 115 phenol batch tests and 31 out of 66 methanol batch tests.  相似文献   

13.
An evaluation is reported of methods used to prepare mosses for analysis when required for monitoring metal pollution. Fontinalis antipyretica and Rhynchostegium riparioides taken from the River Hoëgne, Belgium, were used for the study. The stages in preparation studied critically were the storage of the moss after it had been collected from the river, washing, choice of which particular fraction to use and the conditions for final drying prior to digestion. For any one particular treatment, the concentrations of metals analysed (Ca, Mn, Fe, Co, Ni, Cu, Zn, Cd, Pb) were usually lower in Fontinalis than Rhynchostegium. Metal concentrations found as a result of the various treatments differed markedly for some metals, including Zn, Cd and Pb. However no one sequence of methods is ideal for all purposes. Criteria that need to be considered when selecting methods include the time and facilities available and whether the moss is to be used for monitoring long-term or short-term pollution.  相似文献   

14.
Heavy metals in trace amounts are normal constituents of marine organisms. At sufficiently high concentrations, heavy metals are toxic to living organisms and so it is important to know by how much their concentration may be increased before effects on marine or estuarine populations can be detected or commercial species become unsuitable as food. A method of removing metals is by storage in a particular tissue. Several different sites for storing metals were investigated and concentrations of Cd, Cu, Pb and Zn were examined in muscle, liver and gonads of the smelt (Osmerus mordax) from the North shore of the St Lawrence estuary. Copper and zinc are constituents of several enzymes and are absolutely essential for normal growth and development, while cadmium and lead are not known to have necessary physiological function. A modified wet digestion procedure was used to prepare biological samples for the determination of trace elements by flameless atomic absorption spectrophotometry procedure, using calibration standards made up in a matrix of similar acidity (Table 1). NBS reference material bovine liver was analyzed along with the samples and the results were within the specified tolerance (Table 2). Analyses were reported on a dry weight basis (Table 3) and the correlations with total body weight were determined by regression analysis. Copper (range 0.3–3.3 μg g−1) and zinc (range 19–38 μg g−1) in muscle fillets were found to be negatively correlated with total body weight (Fig. 1). Apparent decreasing concentrations in these two metal levels in muscle sample with increasing body weight were possibly due to factor such as dilution with growth. Growth may dilute metal concentrations in an organism if tissue is added faster than metal. Livers and gonads contained greater levels of the four metals than somatic muscle. Liver metal concentrations of Zn (range 29–108 μg g−1) and Cd (range 0.06–0.37 μg g−1) increased with total body weight. All equations fit data at P < 0.01 (Fig. 2). Positive correlations between size and metal concentrations suggest that net uptake may occur. Inessential, slowly exchanging metals such as Cd appear to reflect an uptake which tend to become a cumulative process (age dependence of concentrations). The occurrence of insignificant correlation between liver concentrations of Cu (mean value: 4 μg g−1) and environmental concentrations of this metal was consistent with equilibration. Since fish are known to possess the metal binding protein metallothionein, a sequestering agent, detoxification of these metals in fish liver may be by sequestration rather than elimination. Increasing metal concentrations in liver may represent storage of sequestered products in that organ. In the gonads, no significant relationship exists between total body weight and trace metal contents. Results of t-test indicated that females had significantly greater Cu and Zn concentrations, but no significant difference existed between males and females for Cd concentrations (Figs 3 and 4). Thus, the relation between concentration and total body weight appears to be specific as to the species, tissues analyzed and environmental conditions. The comparison of metal concentrations in fish to assess variations in contamination levels requires understanding the relationship between metal concentration and body size within each population.  相似文献   

15.
Processes involved in the oxygen cycles of the highly eutrophic Hamilton Harbour were studied. Sediment oxygen demand ks(O2 m−2 day−1) was measured by an in situ method and was determined to be dependent on oxygen concentrations c (m l−1) in the water phase. This dependence was expressed by the equation ks = 0.72 + 0.26 c. The water column oxygen demand of the harbour was determined experimentally and revealed a significant dependence on oxygen concentration. It was estimated that over 80% of the oxygen supplied to the harbour was used within the water column. The sediment oxygen consumed about 18% of the oxygen entering the harbour and was relatively most important in the early stages of stratification when the hypolimnetic dissolved oxygen concentrations were high. The main sources of oxygen were atmospheric reaeration (80%), lake-harbour exchange (10%) and photosynthesis (10%).  相似文献   

16.
The present work shows that a supply which is not sterile and which contains organic matter does not interfere with the performance of a column filled with a support previously inoculated with Nitrobacter winogradskyi serotype agilis.Measurements of oxidation rates give results higher than those obtained under axenic conditions (maximum oxidation rate: 220 mg NO2 h−1 l−1 of reactor volume under non-sterile conditions: 160 mg NO2 h−1 l−1 of reactor volume under axenic conditions).This finding has concentrated our work on the effect of heterotrophic bacteria and of organic matter on the growth of Nitrobacter. We show that a fermentation filtrate of a heterotrophic bacterium (Pseudomonas sp.) added to a fermenter culture of Nitrobacter produces an increase of activity. Experimental results indicate an appreciable reduction in the latence period (15-0 h) and a considerable increase in the rate of growth of Nitrobacter. (Maximum growth rate with 10% of heterotrophic filtrate: 0.044 h−1; without filtrate: 0.032 h−1.)  相似文献   

17.
The algicidal and algistatic effects of copper, zinc and cadmium on Selanastrum capricornutum, a unicellular green algae were analyzed by using a modification of the Algal Assay Procedures Bottle Test.Algicidal concentrations of copper, zinc and cadmium were 0.30, 0.70, and 0.65 mg 1−1. Treatment of Selanastrum with various concentrations of the metals resulted in similar growth rates characterized by extended lag growth phases.Combinations of copper, zinc and cadmium were similar in toxicity to equal concentrations of zinc. Combinations of copper and cadmium resulted in a greater growth rate than equal concentrations of copper suggesting that cadmium inhibits copper toxicity.Selanastrum was able to exist in waters from the upper South Fork and North Fork of the Coeur d'Alene River where zinc and other metals were in low concentration. However, the algae was not able to tolerate zinc concentrations greater than 0·5 mg 1−1 from waters of other parts of the drainage. These observations were consistent with laboratory findings where 0.7 mg 1−1 zinc was algicidal and 0.1 mg 1−1 inhibited the growth of Selanastrum.  相似文献   

18.
Oxygen uptake by soft bottom sediments was measured in situ with an oxygen electrode in a bell jar. Values in the range 0·3-3·0 g O2 m−2 d−1 were obtained at 19 localities in fresh and brackish water. Comparative measurements were made in the laboratory on sediment cores. These gave consistently lower values than the in situ measurements. Laboratory experiments showed that the oxygen uptake depended on the oxygen concentration and that the temperature coefficient decreased with increasing temperature. There was no simple correlation between oxygen uptake and content organic matter in sediments.  相似文献   

19.
The constituents of hydrocarbons between highly polluted river waters collected from the Tokyo area and unpolluted river, brook, reservoir and pond waters obtained from the Ogasawara (Bonin) Islands were compared to characterize their features for polluted and unpolluted waters. n-Alkanes between the carbon chain length of C12 and C36, squalane and unresolved complex mixture of hydrocarbons (UCMH) were found in most of the river waters of the Tokyo area at the contents ranging from 0.026 to 14 μg 1−1, from 0.004 to 1.7 μg 1−1 and from less than 5 to 290 μg 1−1, respectively, whereas in the waters of the Ogasawara Islands, only n-alkanes ranging from C13 to C37 were found with the great predominance of odd-carbon numbers at the contents varying from 0.042 to 4.0 μg 1−1.It was indicated that the presence of squalane, UCMH and even-carbon numbered n-alkanes as the major constituents are intimately correlated with artificial hydrocarbon sources (fossil fuels and their products and both combustion products, and industrial products), while the great predominance of odd-carbon numbered n-alkanes for the unpolluted areas are mainly due to algae and higher plants. Besides, the major portion of n-alkanes, squalane and UCMH are thought to be present in polluted and unpolluted waters associated with particulate materials.  相似文献   

20.
The potential of the surfactant linear alkylbenzene sulfonate (LAS) to be bioconcentrated in various tissues and organs of bluegill (Lepomis macrochirus) was determined during a 35 day continuous exposure to a mean measured water concentration of 0.5 (±0.05) mg l−1 14C-ring labelled LAS and during a 14 day depuration study. Based on the assumption that all of the 14C-radioactivity was present as intact LAS, which represents the maximum amount of LAS that could be present, the steady state whole body bioconcentration factor (BCF) was 104 and the muscle BCF was 36. The site of greatest concentration was the gall bladder with a BCF of approx. 5000. The BCF for liver, gills and viscera, remaining carcass, and blood ranged from 64 to 283. Clearance of 14C-activity from the organs and tissues was rapid with half-lives of 2–5 days. These results on LAS were obtained by both the plateau and kinetic methods of data analysis and are similar to other published data on surfactant bioconcentration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号