首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
A method for preparation of particle crystal film constructed trom monodisperse silica colloidal partices in diameter of about 300 nm is reported. The films were prepared from an ethanol suspension by vertical deposition that relies on capillary forces to assemble colloidal crystal particles on a vertical substrate. The 3D ordered films were characterized by transmission spectra and scanning electric microscope (SEM). The effect of evaporation temperature, particle concentration and sintered temperature on the quality of colloidal particle crystal film was investigated.  相似文献   

2.
An emulsion of polystyrene/poly (butylacrylate-methyl methacrylate acrylic acid) core/shell latex particles (PS/P (BA-MMA-AA)) has been prepared by use of three synthetic methods. The effects of synthetic methods on the distribution of carboxyl groups in latex particles were studied. The results show that the seed emulsion polymerization in which the pre-emulsified monomers were added by dropping method to the second stage is the best technique for obtaining the optimum distribution of carboxyl groups on the surface of the latex particles. Furthermore, by using PS/P (BA-MMA-AA), a type of novel composite emulsion of silica sol-PS/P (BA-MMA-AA) was synthesized with the above method. By observation through transmission EM, the morphology of the latex particles obtained shows that a composite structure has been formed between silica sol particles and organic polymer particles.  相似文献   

3.
A stable silica sol with 3-5 nm in diameter, which can form homogeneous film without crack, was prepared and characterized. Then, the inorganic-organic hybrid aqueous dispersion composed of such a silica sol and an emulsion of styrene (St) and acrylate (Ac) copolymer was prepared and the hybrid effect between the silica sol and poly(St-co-Ac) was observed by Fourier transform infra-red (FT-IR) spectroscope. The toughness of the film prepared by this kind of hybrid aqueous dispersion was excellent, as it was enhanced appreciably by commixing with a small amount of poly(St-co-Ac) emulsion. Some amino-polysiloxane modified hybrid aqueous dispersions were also prepared and the properties of the modified dispersions and their films were investigated. The experimental results showed that the film prepared with such an amino-polysiloxane modified hybrid dispersion exhibited excellent hydrophobicity and low surface energy after heat treatment for 1.5 h, during which the formation of the graft copolymer was observed. The surface energy of this film decreases as a result of the enrichment of siloxane segments on the film surface.  相似文献   

4.
The plasma polymerization method and dynamic ion-beam mixed implantation method were employed to coat ultra-thin polymer films on copper plates. Experiments indicated that steady dropwise condensation of steam at atmospheric pressure occurred. The condensation heat transfer coefficients increased by approximately 3 and 5---7 times for the polytrimethylvinylsilane film and polytetrafiuoroethylene film respectively, compaxed with the value for film condensation under the same experimental conditions. The temperatures on the condensing surface and inside the test block were found to be rapidly and randomly fluctuated. The properties of the coated films and advantages of the methods used in this investigation were discussed briefly.  相似文献   

5.
核-壳结构含氟丙烯酸酯乳液的合成与表征   总被引:13,自引:0,他引:13       下载免费PDF全文
A fluorine-containing polyacrylate copolymer emulsion was synthesized by a seed emulsion polymerization method, in which methyl methacrylate (MMA) and butyl acrylate (BA) were used as main monomers and hexafluorobutyl methacrylate (HFMA) as fluorine-containing monomer. The structure and properties were characterized by Fourier transform infrared spectrum (FT-IR), transmission electron microscopy (TEM), particle size analysis, X-ray photoelectron spectroscopy (XPS), contact angle (CA), differential scanning calorimetry (DSC) and thermogravimetry (TG) analysis. The FTIR and TEM results showed that HFMA was effectively involved in the emulsion copolymerization, and the formed emulsion particles had a core-shell structure and a narrow particle size distribution. XPS and CA analysis revealed that a gradient concentration of fluorine existed in the depth profile of fluorine-containing emulsion film which was richer in fluorine and more hydrophobic in one side. DSC and TG analysis also showed that a clear core-shell structure existed in the fluorine-containing emulsion particles, and their film showed higher thermal stability than that of fluorine-free emulsion.  相似文献   

6.
Edible zein-based films containing lysozyme(LY) and ascorbic acid(AA) were developed in the presence of polyethylene glycol 400(PEG 400), the combined effects of LY and AA on the microstructure, mechanical properties and release properties of developed zein films were investigated in detail. The results of microstructure characterization indicated that zein-based films became compact and smooth, and LY aggregates were well distributed in the zein matrix because of the simultaneous addition of LY and AA. The results of mechanical tests showed that because of the synergistic effects of LY and AA on zein film, elongation at break of zein-based film could be up to 138%, which was 34.5 times higher than that of zein control film. LY release tests showed that when the concentration of AA was less than 3.1 mg·cm~(-2), the release rate of LY significantly decreased by 33.7%, and the total release increased by 80.6%. While the release profiles of AA showed that the release rate and total release of AA from the films containing LY increased by approximately 68.9% and 61.7% than the films without LY. Good antioxidant and sustained antimicrobial activities were found for the developed zein films.  相似文献   

7.
丁二烯气相聚合过程中聚合物颗粒增长的动态研究   总被引:2,自引:0,他引:2       下载免费PDF全文
An experimental apparatus composed of microscope, video camera, image-processing, and mini reactor which can be used for real-time measurement of the growth of polymer particle in gas phase polymerization was built up to carry out dynamic study of gas phase polymerization of butadiene by heterogeneous catalyst based on neodymium(Nd). The studies of the shape duplication of polymer particles and catalyst particles and the growth rate of polymer paxticle were made. Results show that the appaxatus and procedure designed can be well utilizedto make dynamic observation and data collection of the growth of polymer particle in gas phase polymerization.A phenomenon of shape duplication of polymer particles and catalyst particles was observed by the real-time measurement. The result also concludes that the activity of individual catalyst particle is different, and the effect of reaction pressure on the growth of polymer particle is significant.  相似文献   

8.
The influence of solid particles size,density and loading on the critical gas-inducing impeller speed was investigated in a gas–liquid–solid stirring tank equipped with a hollow Rushton impeller.Three types of solid particles,hollow glass beads with diameters of 300 μm,200 μm,100 μm,and 60 μm,silica gel and desalting resin,were used.It was found that the adding solid particles would change the critical impeller speed.For hollow glass beads and silica gel,whose relative densities were less than or equal to 1.5,the critical impeller speeds increased with the solid loading before reaching the maximum values,and then decreased to a value even lower than that without added solids.The size of the solids also had apparent influence on the critical impeller speed,and larger solid particles correspond to a smaller critical impeller speed.The experimental data also showed that the gasinducing was beneficial to the suspension of the solid particles.  相似文献   

9.
Sorption isotherm of chloroform in polyvinyl dimethylsiloxane(PVDMS)polymer film was measured via the gravimetric method,and this film was confirmed experimentally to be good membrane material to recover chloroform from gas stream with high sorption capacity.A new PVDMS-Al_2O_3 composite hollow fibre membrane was further prepared by coating a PVDMS film on the outer surface of Al_2O_3 hollow fibre porpous substrate prepared by a dry/wet phase inversion method.Microstructure of the composite membranes was examined by scanning electron microscopy(SEM),indicating the PVDMS coating layer was uniform,free of defects,and around 15μm thick.Performance of the PVDMS-Al_2O_3 composite hollow fibre membranes for chloroform recovery was investigated.By comparing the experimental data that derived from a mathematical model,the permeabilities of chloroform and nitrogen in the PVDMS polymer membrane were obtained.The effects of temperature and feed flow rate on the chloroform recovery and permeate concentration were investigated both experimentally and theoretically.  相似文献   

10.
Polyethersulfone(PES)film with regular microporous structure was formed using dichloromethane as the solvent via water vapor induced phase separation(VIPS).The effects of solution concentration,atmospheric humidity and temperature,as well as molecular weight of PES on the surface morphology of the polymer film were investigated.The surface morphology characterized by SEM showed that the pore size reduced as the solution concentration increased.There was an optimum range of relative humidity for the formation of regular pore structure, which was from 60%to 90%at concentration of 20 g·L-1 and 20°C.With the atmospheric temperature varied from 20 to 30°C,the pore became larger and the space between pores increased.The pore size in the PES film with low molecular weight was smaller than that with high molecular weight.  相似文献   

11.
Polyacrylate/silica hybrid latexes (PAES) with high silicon contents (up to 21%) were prepared by directly mixing colloidal silica with polyacrylate emulsion (PAE) modified by a silane coupling agent. Sol–gel-derived organic/inorganic thin films were obtained by addition of hydrophilic co-solvents to PAES and subsequent drying at room temperature. The effects of co-solvents and γ-methacryloxypropyltrimethoxysilane (KH570) content on the properties of PAES films were investigated. Dynamic light scattering (DLS) data indicated that the average diameter of PAES (96 nm) was slightly larger than that of PAE (89 nm). TEM photo revealed that colloidal silica particles were dispersed uniformly around polyacrylate particles and that some of the colloidal silica particles were adsorbed on the surface of PAE particles. The data of crosslinking degree and FT-IR spectra confirmed that the chemical structure of the PAES changed to form Si–O–Si-polymer crosslinking networks during the film formation. AFM photos, contact angle for water, and XPS analysis showed that the polyacrylate/inorganic hybrid films with high silicon contents were formed by the co-solvent-mediated, sol–gel method and that the Si-based polymers were uniformly distributed on the surface of the dried films. TGA data demonstrated that the PAES films display much better thermal stability than the PAE counterpart.  相似文献   

12.
With the goal of developing a waterborne coating material that prevents staining, organic-inorganic composites prepared from colloidal silica and two types of acrylic resin emulsions were investigated as exterior coatings. conventional acrylic resin emulsion and organic silane hybridized acrylic resin emulsion prepared by emulsion polymerization were mixed with colloidal silica to form organic-inorganic comiposite films. The addition of colloidal silica to emulsions yielded films with higher hydrophilicities, as indicated by lower water contact angles for these films in comparison to films without colloidal silica. The water contact angles of organic silane hybridized acrylic resin emulsion/colloidal silica films were lower than those of acrylic resin emulsion/colloidal silica films. Composite films containing colloidal silica particles smaller than 100 nm in diameter showed high hydrophilicities. Observations of the dispersed state of colloidal silicaparticles in organic-inorganic composite films by scanning electron microscopy (SEM) and transmission electron microscopy (TEM) demonstrated that colloidal silica particles were densely aggregated on the film surface. Outdoor exposure tests of the coating materials prepared from organic silane hybridized acrylic resin and colloidal silica particles with diameters of 7.5 nm showed excellent stain resistance.  相似文献   

13.
The polyacrylate/silica composite latexes were prepared by directly mixing silica particles with polyacrylate modified by γ‐methacryloxypropyltrimethoxysilane (MPS). Fourier transform infrared (FTIR) spectra and X‐ray photoelectron spectroscopy (XPS) analysis of polyacrylate/silica composite films confirmed the sol‐gel processes occurred to form Si–O–Si crosslinking bonds during the process of film‐formation. Transmission electron microscope (TEM) images revealed that the polyacrylate latexes were in contact with silica particles while some silica particles stayed together. Atomic force microscope (AFM) photos showed that organic and inorganic phases were strictly connected with each other and silica particles were embedded in the polymeric matrix with a size range of 20–50 nm. Differential scanning calorimetry (DSC) curves demonstrated that the composite film with 3% MPS has higher Tg than those of pure polyacrylate films. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42417.  相似文献   

14.
To design an organic–inorganic composite material with colloidal silica as the inorganic component, an acrylic resin emulsion and an organic silane hybridized acrylic resin emulsion were prepared by emulsion polymerization. The organic–inorganic composite films were prepared by blending the emulsion and the colloidal silica. The contact angles for water, gloss at 60°, and the transparencies of those films were measured. The dispersion state of colloidal silica in films was observed with a scanning electron microscope (SEM) and a transmission electron microscope (TEM). From these results, the contact angle for water of the organic–inorganic composite film obtained from the silane hybridized acrylic resin emulsion was lower than that of the organic–inorganic composite film obtained from an acrylic resin emulsion. The contact angles for water in organic–inorganic composite films with colloidal silicas were lower than those of the films without the colloidal silicas. The films prepared from silane hybridized acrylic resin emulsion composites with colloidal silicas of less than 100 nm were more hydrophilic. SEM and TEM observations demonstrated that some aggregations of the small colloidal particle silica were densely dispersed on the film surface. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 2051–2056, 2006  相似文献   

15.
Polysilsesquioxane‐polyacrylate/silica hybrid latexes (PSQ‐PAS) with high silicon content were prepared by directly mixing colloidal silica with polysilsesquioxane‐polyacrylate emulsion (PSQ‐PA), which was prepared through seeded emulsion polymerization using polymethacryloxypropylsilsesquioxanes as the core and polyacrylate (PA) as the shell respectively. The chemically bonded PSQ‐PAS thin films were obtained via sol‐gel process after addition of hydrophilic cosolvent to PSQ‐PAS emulsion and subsequent drying at room temperature. The effects of silica/PSQ‐PA ratio (w/w) on the film properties of hardness, optical property and thermal stability were investigated. Fourier transform infrared spectroscopy (FTIR), dynamic light scattering (DLS) and transmission electron microscopy (TEM) were used to characterize the chemical composition and morphology of the resultant hybrid particles. DLS and TEM results indicated that both PSQ and PSQ‐PA particles had narrow size distribution and their average diameters were about 200 and 350 nm, respectively. Pendulum durometer, UV–vis spectroscopy, and thermogravimetric analysis (TGA) were used to characterize the hardness, optical property and thermal stability of PSQ‐PAS latex films. The results showed that the PSQ‐PAS films hardness increased with the increasing ratio of silica/PSQ‐PA, whereas the transmittance decreased slightly. TGA curves demonstrated PSQ‐PAS films displayed excellent thermal stability, and the residual silicon weight exceeded 30%. POLYM. COMPOS., 36:389–396, 2015. © 2014 Society of Plastics Engineers  相似文献   

16.
通过细乳液聚合方法制备了改性二氧化硅/丙烯酸酯杂化高分子乳液。考察了偶联剂改性前后对杂化乳液粒径的影响。杂化乳液成膜后通过XPS测定发现,未见Si激发,说明二氧化硅被丙烯酸酯包裹。在SEM照片上可以发现改性后的二氧化硅与丙烯酸酯亲和力增加,改性后的杂化乳液高分子比未改性的杂化乳液高分子的韧性有了一定的提高。  相似文献   

17.
BACKGROUND: Polyacrylate/silica nanocomposite latexes have been fabricated using blending methods with silica nanopowder, in situ polymerization with surface‐functionalized silica nanoparticles or sol–gel processes with silica precursors. But these approaches have the disadvantages of limited silica load, poor emulsion stability or poor film‐forming ability. RESULTS: In this work, poly[styrene‐co‐(butyl acrylate)‐co‐(acrylic acid)] [P(St‐BA‐AA)]/silica nanocomposite latexes and their dried films were prepared by adding an acidic silica sol to the emulsion polymerization stage. Morphological and rheological characterization shows that the silica nanoparticles are not encapsulated within polymer latex particles, but interact partially with polymer latex particles via hydrogen bonds between the silanol groups and the ? COOH groups at the surface of the polymer particles. The dried nanocomposite films have a better UV‐blocking ability than the pure polymer film, and retain their transparency even with a silica content up to 9.1 wt%. More interestingly, the hardness of the nanocomposite films increases markedly with increasing silica content, and the toughness of the films is not reduced at silica contents up to 33.3 wt%. An unexpected improvement of the solvent resistance of the nanocomposite films is also observed. CONCLUSION: Highly stable P(St‐BA‐AA)/silica nanocomposite latexes can be prepared with a wide range of silica content using an acidic silica sol. The dried nanocomposite films of these latexes exhibit simultaneous improvement of hardness and toughness even at high silica load, and enhanced solvent resistance, presumably resulting from hydrogen bond interactions between polymer chains and silica particles as well as silica aggregate/particle networks. Copyright © 2009 Society of Chemical Industry  相似文献   

18.
The silica sol/fluoroacrylate core?Cshell nanocomposite emulsion was successfully synthesized via traditional emulsion polymerization through grafting of KH-570 onto silica particles. Comparing the performance of the polyacrylate copolymer, the fluorinated polyacrylate copolymer and the silica sol/fluoroacrylate core?Cshell nanocomposite emulsion, we can come to a conclusion that the silica sol/fluoroacrylate core?Cshell nanocomposite emulsion presents significantly excellent performance in all aspects. The products were characterized by Fourier transform infrared (FTIR), photon correlation spectroscopy (PCS), transmission electron microscopy (TEM), thermogravimetry (TGA), Contact angle and UV?Cvis analyses techniques. The chemical structure of polyacrylate copolymer, fluorinated polyacrylate copolymer and silica sol/fluoroacrylate nanocomposite were detected by FTIR. The size and stability of emulsion latex particles were determined by PCS technique. TEM analysis confirmed that the resultant latex particle has the core?Cshell structure, obviously. The water absorption and contact angle data also showed that the silica sol/fluoroacrylate nanocomposite film has good hydrophobic performance. TGA analysis indicated the weight loss of the silica sol/fluoroacrylate nanocomposite film begins at around 350?°C which testifies its good thermal stability. The UV?Cvis spectroscopy analysis showed that the silica sol/fluoroacrylate nanocomposite film possess UV?Cvis shielding effect when the added volume amount of KH570 modified silica sol is up to 5?mL. Therefore, the excellent properties of hydrophobicity, thermodynamics and resistance to ultraviolet provide the silica sol/fluoroacrylate nanocomposite film with potential applications in variety fields. In addition, the formation mechanism of core?Cshell structure silica sol/fluoroacrylate nanocomposite latex particles was speculated.  相似文献   

19.
水性聚氨酯/硅溶胶复合涂层的制备与性能   总被引:1,自引:0,他引:1  
将水性聚氨酯乳液与硅溶胶共混,制备了水性聚氨酯/硅溶胶复合乳液。采用TEM、激光粒度分析仪、流变仪、ATR-FTIR、TG对复合乳液及其涂膜进行表征,探讨了硅溶胶用量对复合涂膜性能的影响。ATR-FTIR分析表明,聚氨酯分子和硅溶胶之间可以形成氢键,但不存在化学键结合;TEM、激光粒度分析测试表明,硅溶胶质量分数的增加,使复合乳液粒子粒径增大,粒度分布变宽,当硅溶胶质量分数20%后,乳胶粒子间易发生团聚;流变分析发现,加入硅溶胶后,乳液的表观黏度(ηa)增大,假塑性增强。性能测试结果表明,硅溶胶质量分数20%时,复合乳液具有好的储存稳定性,复合涂膜表现出很好的热稳定性,48 h吸水率仅为18.94%,同时表现出很好的耐溶剂性能,拉伸强度达到28.98 MPa,铅笔硬度达2H,附着力0级。  相似文献   

20.
The film‐forming polyacrylate/silica core–shell nanocomposite particles with octamethylcyclotetrasiloxane (D4) were successfully synthesized via aqueous emulsion polymerization in the presence of a glycerol‐functionalized nano silica sol. The ring‐opening polymerization of D4 and the reaction with the glycerol‐functionalized nano silica particles before emulsion polymerization was the key procedure in this process. Transmission electron microscopy results showed that more nano silica particles tended to coat on the polyacrylate particles surface after the nano silica sols were modified with D4. The silica aggregation efficiency was increased from 90.9 to 98.6% when the amount of D4 used in the system was varied from 0 to 8.0 wt %. The transparency of the nanocomposite films was not compromised after D4 was incorporated into the system. The films of the nanocomposite particles with or without D4 both exhibited superior abrasive resistance. Furthermore, the water resistance and hydrophobicity of the films of these particles with D4 were also improved significantly. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42003.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号