首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Bilateral retinal lesions have been made in and around the area centralis in 5 kittens 23-28 days of age. Twelve to 14 months later, microelectrode recordings were made in the LGN of these animals. Penetrations through the medial, deafferented portion of the nucleus encountered retinally innervated cells at the same rate as penetrations through the intact lateral half of the nucleus or through the LGN of normal adult cats. The correlation between orthodromic anc antidromic latency for LGN relay cells in experimental animals was reduced when compared to normal animals, and the percentage of cells receiving dual fast and slow retinal input was increased in experimental animals. These observations are interpreted as evidence that the medial portion of the LGN was reinnervated following the neonatal retinal lesions, and that the specificities that normally exist between relay cells and their retinal afferents in terms of axonal conduction velocity were not maintained during the course of this reinnervation.  相似文献   

3.
Activity-dependent extracellular pH shifts were studied in slices of the rat dorsal lateral geniculate nucleus (dLGN) using double-barreled pH-sensitive microelectrodes. In 26 mM HCO3--buffered media, afferent activation (10 Hz, 5 s) elicited an early alkaline shift of 0.04+/-0.02 pH units associated with a later, slow acid shift of 0.05+/-0.03 pH units. Extracellular pH shifts in the ventral lateral geniculate nucleus were rare, and limited to acidifications of approximately 0.02 pH units. The alkaline shift in the dLGN increased in the presence of benzolamide (1-2 microM), an extracellular carbonic anhydrase inhibitor. The mean alkaline shift in benzolamide was 0.10+/-0.05 pH units. In 26 mM HEPES-buffered saline, the alkaline response averaged 0.09+/-0.03 pH units. The alkaline shifts persisted in 100 microM picrotoxin (PiTX) but were blocked by 25 microM CNQX/50 microM APV. If stimulation intensity was raised in the presence of CNQX/APV, a second alkalinization arose, presumably due to direct activation of dLGN neurons. The direct responses were amplified by benzolamide, and blocked by either 0 Ca2+/EGTA, Cd2+ or TTX. In 0 Ca2+, addition of 500 microM-5 mM Ba2+ restored the alkalosis. Alkaline shifts evoked with extracellular Ba2+ were larger and faster than those elicited by equimolar Ca2+. In summary, synchronous activation in the dLGN results in an extracellular H+ sink, via a Ca2+-dependent mechanism, similar to activity-dependent alkaline shifts in hippocampus.  相似文献   

4.
Higher organisms perceive information about external or internal physical or chemical stimuli with specialized sensors that encode characteristics of that stimulus by a train of action potentials. Usually, the location and modality of the stimulus is represented by the location and specificity of the receptor and the intensity of the stimulus and its temporal modulation is thought to be encoded by the instantaneous firing rate. Recent studies have shown that, primarily in cortical structures, special features of a stimulus also are represented in the temporal pattern of spike activity. Typical attributes of this time structure are oscillatory patterns of activity and synchronous discharges in spatially distributed neurons that respond to inputs evoked by a coherent object. The origin and functional significance of this kind of activity is less clear. Cortical, subcortical and even very peripheral sources seem to be involved. Most of the relevant studies were devoted to the mammalian visual system and cortical findings on temporally structured activity were reviewed recently (Eckhorn, 1994, Progr. Brain Res., Vol. 102, pp. 405-426; Singer and Gray, 1995, Annu. Rev. Neurosci., Vol. 18, pp. 555-586). Therefore, this article is designed to give an overview, especially of those studies concerned with the temporal structure of visual activity in subcortical centers of the primary visual pathway, which are the retina and the dorsal lateral geniculate nucleus (LGN). We discuss the mechanisms that possibly contribute to the generation and modulation of the subcortical activity time structure and we try to relate to each other the subcortical and cortical patterns of sensory activity.  相似文献   

5.
We report the results of sclerotherapy in 20 patients with bleeding gastric varices due to hepatic schistosomiasis. In an endemic area, patients with hepatic schistosomiasis, and bleeding gastric varices seen on endoscopy to be inferior extension of esophageal varices, were treated with emergency endoscopic injection just proximal to the cardia. Hemostasis was achieved in 17. Obliteration of varices was achieved in all patients with sclerotherapy, combined with surgery. Thirteen patients who had not been operated on in the past and consented to surgery underwent esophagogastric devascularization with splenectomy. Surgery was carried out as an emergency in the three patients who did not respond to sclerotherapy and electively in 10 patients after control of bleeding. After surgery, sclerotherapy was required for remnant varices. One patient with Child-Pugh grade C cirrhosis died of hepatic encephalopathy after control of the bleed. During a median follow-up of 9 months (range, 1-25 months), recurrence of bleeding in one patient and recurrent varices in two others were controlled with sclerotherapy. One patient had a fatal hemorrhage at home. We conclude that sclerotherapy effectively controls acutely bleeding type 1 gastric varices. Combined with esophagogastric devascularization and splenectomy, long-term results may be encouraging in patients with hepatic schistosomiasis.  相似文献   

6.
Retinal projections to the lateral geniculate nucleus (LGN) in ferrets progressively segregate into eye-specific laminae and subsequently into sublaminae that receive inputs from either ON-center or OFF-center afferents. To study the development of synaptic efficacy during a period of activity-dependent growth and reorganization in the CNS, we recorded spontaneous EPSCs (sEPSCs) from cells of the LGN during ON/OFF sublamination. We also examined retinal inputs specifically by stimulating the optic tract in the presence of strontium and recording evoked miniature EPSCs (emEPSCs). The rise times, areas, half-widths, and decay times of sEPSCs and emEPSCs and interevent intervals of sEPSCs recorded at the beginning of ON/OFF sublamination were not different from those recorded after its completion. Typically EPSC areas were small (10-20 fC) but varied greatly both within and between neurons. The frequency of sEPSCs was also quite variable, ranging from 0.2 to 5 Hz. sEPSCs were equivalent to miniature EPSCs recorded in the presence of tetrodotoxin, and both sEPSCs and emEPSCs were CNQX-sensitive. No difference was observed between sEPSCs recorded at room temperature and those recorded at 34 degreesC, and strontium could be substituted for calcium with no effect on sEPSC shape. These data argue for a remarkable stability in the components of at least AMPA-mediated synaptic transmission during a period of major synaptic rearrangement in the LGN.  相似文献   

7.
This research determined whether fear-conditioned, acoustic stimuli induce thalamic arousal reflected in associative responses in dorsal lateral geniculate nucleus (dLGN) neurons. Rabbits received a Pavlovian discriminative fear conditioning procedure in which one tone conditioned stimulus (CS+) was always paired with an aversive unconditioned stimulus (UCS) and another tone (CS–) was never paired with the UCS. Responses of single dLGN neurons to random CS+ and CS– presentations were then recorded. Nine of 15 recorded neurons demonstrated significantly greater firing during the CS+ versus the CS–. Their spontaneous activity demonstrated tonic firing during increased neocortical arousal and burst firing during decreased neocortical arousal. The results demonstrate that dLGN neurons show associative responses to fear-conditioned, acoustic stimuli and present a model for investigating the neural circuits by which such stimuli affect sensory processing at the thalamic level. (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

8.
The areal and laminar distributions of the projection from the parvocellular part of laminae C of the dorsal lateral geniculate nucleus (Cparv) were studied in visual cortical areas of the cat with the anterograde tracing method by using wheat germ agglutinin conjugated to horseradish peroxidase. A particular objective of this study was to examine the central visual pathways of the W-cell system, the precise organization of which is still unknown. Because the Cparv in the cat is said to receive W-cell information exclusively from the retina and the superior colliculus, the results obtained would provide an anatomical substrate for the W-cell system organization in mammals. The results show that the cortical targets of the Cparv are areas 17, 18, 19, 20a, and 21a and the posteromedial lateral suprasylvian (PMLS) and ventral lateral suprasylvian(VLS) areas. In area 17, the projection fibers terminate in the superficial half of layer I; the lower two-thirds of layer III, extending to the superficial part of layer IV; and the deep part of layer IV, involving layer Va. These terminations form triple bands in area 17. The projection terminals in layer I are continuous, whereas those in layers III, IV, and Va distribute periodically, exhibiting a patchy appearance. In areas 18 and 19, the projection fibers terminate in the superficial half of layer I and in the full portions of layers III and IV, forming double bands. In these areas, the terminals in layer I are continuous, whereas those in layers III and IV distribute periodically, exhibiting a patchy appearance. In area 20a, area 21a, PMLS, and VLS, projection fibers terminate in the superficial part of layer I, in part of layer III, and in the full portion of layer IV, although they are far fewer in number than those seen in areas 17, 18, and 19. The present results demonstrate that the Cparv fibers terminate in a localized fashion in both the striate and the extrastriate cortical areas and that these W-cell projections are quite unique in their areal and laminar organization compared with the X- and Y-cell systems.  相似文献   

9.
Neural activity in the dorsal lateral geniculate nucleus of the thalamus (DLG) is modulated by an ascending cholinergic projection from the brainstem. The purpose of this study was to identify and localize specific muscarinic receptors for acetylcholine in the DLG. Receptors were identified in rat and cat tissue by means of antibodies to muscarinic receptor subtypes, ml-m4. Brain sections were processed immunohistochemically and examined with light and electron microscopy. Rat DLG stained positively with antibodies to the m1, m2,and m3 receptor subtypes but not with antibodies to the m4 receptor subtype. The m1 and m3 antibodies appeared to label somata and dendrites of thalamocortical cells. The m1 immunostaining was pale, whereas m3-positive neurons exhibited denser labeling with focal concentrations of staining. Strong immunoreactivity to the m2 antibody was widespread in dendrites and somata of cells resembling geniculate interneurons. Most m2-positive synaptic contacts were classified as F2-type terminals, which are the presynaptic dendrites of interneurons. The thalamic reticular nucleus also exhibited robust m2 immunostaining. Cat DLG exhibited immunoreactivity to the m2 and m3 antibodies. The entire DLG stained darkly for the m2 receptor subtype, except for patchy label in the medial interlaminar nucleus and the ventralmost C laminae. The staining for m3 was lighter and was distributed more homogeneously across the DLG. The perigeniculate nucleus also was immunoreactive to the m2 and m3 subtype-specific antibodies. Immunoreactivity in cat to the m1 or m4 receptor antibodies was undetectable. These data provide anatomical evidence for specific muscarinic-mediated actions of acetylcholine on DLG thalamocortical cells and thalamic interneurons.  相似文献   

10.
11.
We studied the binaural properties of 72 neurons in the dorsal nucleus of the lateral lemniscus (DNLL) of the mustache bat. There are six main findings: 1) Conventional EI neurons that were excited by stimulation of the contralateral ear and inhibited by ipsilateral stimulation, comprise the majority (80%) of binaural DNLL cells. 2) For most EI neurons the quantitative features of their interaural intensity disparity (IID) functions, maximum inhibition, dynamic range and 50% point IIDs, were largely unaffected by the absolute intensity at the contralateral ear. 3) Although the net effect of the inhibition evoked by ipsilateral stimulation was to suppress discharges evoked by contralateral stimulation, our results indicate that the inhibitory inputs can act in three different ways. The first was a time-intensity trade, where increasing the intensity at the ipsilateral ear evoked inhibitory effects with progressively shorter latencies. The second way was that the latency of inhibition did not appear to decrease with ipsilateral intensity, but rather increasing ipsilateral intensity appeared only to increase the strength of the inhibition. The third way was that the lowest effective ipsilateral intensity suppressed the first spikes evoked by the contralateral stimulus and higher ipsilateral intensities then suppressed the later discharges of the train. Each of these inhibitory patterns was seen in about a third of the cells. 4) Neurons that had more complex binaural properties, such as the facilitated EI neurons (EI/F) and neurons that were driven by sound to either ear (EE neurons), represented about 20% of the binaural population. There were two types of EE neurons; those in which there was a simple summation of discharges evoked with certain IIDs, and those in which the spike-counts to binaural stimulation at certain IIDs were greater than a summation of the monaural counts and thus were facilitated. 5) All binaural neurons were strongly inhibited with IIDs that favored the ipsilateral ear. Our findings indicate that the more complex binaural types, the facilitated EI neurons (EI/F) as well as the two types of EE neurons, may be constructed from conventional EI neurons by adding inputs from several sources that impart the more complex features to these neurons. We propose four circuits that could account for the different binaural response properties that we observed. The circuits are based on the known connections of the DNLL and the neurochemistry of those connections. Finally, we compared the binaural properties of neurons in the mustache bat DNLL with those of neurons in the mustache bat inferior colliculus and lateral superior olive.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

12.
It has been shown that enhancing or reducing dopaminergic activity in the retina modifies the balance between center and surround responses of retinal neurons such as ganglion cells. We investigated how these changes are reflected in the dorsal lateral geniculate nucleus (dLGN) by studying the effects of injections of apomorphine, a mixed D1 and D2 agonist of dopamine, on the visual responses of geniculate cells. Experiments were carried out on anesthetized adult pigmented rabbits. A varnished tungsten microelectrode was used to record single-unit activity in the dLGN. The flash electroretinogram was also recorded to monitor retinal changes and to confirm the success of the injections. Apomorphine was injected intravitreally or intravenously. The results can be summarized as follows. Apomorphine decreased the amplitude of the b-wave of the electroretinogram. For most dLGN cells, apomorphine produced a strong reduction in response amplitude evoked by sine-wave grating stimuli, presented at various spatial frequencies. Responses to flashing spots were also reduced but to a much lesser extent than those to gratings. In addition, the balance between the responses to small and large spots changed in favor of large stimuli. Consequently, after injection of apomorphine, the geniculate cells were preferentially activated by large-sized flashing stimuli. These data suggest that apomorphine can reduce the spatial contrast sensitivity of cells in the dLGN. This effect could be mediated by the reduction of the strength of lateral inhibition at the retinal level.  相似文献   

13.
14.
We have studied the spatiotemporal receptive-field organization of 144 neurons recorded from the dorsal lateral geniculate nucleus (dLGN) of adult cats and kittens at 4 and 8 wk postnatal. Receptive-field profiles were obtained with the use of a reverse correlation technique, in which we compute the cross-correlation between the action potential train of a neuron and a randomized sequence of long bright and dark bar stimuli that are flashed throughout the receptive field. Spatiotemporal receptive-field profiles of LGN neurons generally exhibit a biphasic temporal response, as well as the classical center-surround spatial organization. For nonlagged cells, the first temporal phase of the response dominates, whereas for lagged neurons, the second temporal phase of the response is typically the largest. This temporal phase difference between lagged and nonlagged cells accounts for their divergent behavior in response to flashed stimuli. Most LGN cells exhibit some degree of space-time inseparability, which means that the receptive field cannot simply be viewed as the product of a spatial waveform and a temporal waveform. In these cases, the response of the surround is typically delayed relative to that of the center, and there is some blending of center and surround during the time course of the response. We demonstrate that a simple extension of the traditional difference-of-Gaussians (DOG) model, in which the surround response is delayed relative to that of the center, accounts nicely for these findings. With regard to development, our analysis shows that spatial and temporal aspects of receptive field structure mature with markedly different time courses. After 4 wk postnatal, there is little change in the spatial organization of LGN receptive fields, with the exception of a weak, but significant, trend for the surround to become smaller and stronger with age. In contrast, there are substantial changes in temporal receptive-field structure after 4 wk postnatal. From 4 to 8 wk postnatal, the shape of the temporal response profile changes, becoming more biphasic, but the latency and duration of the response remain unchanged. From 8 wk postnatal to adulthood, the shape of the temporal profile remains approximately constant, but there is a dramatic decline in both the latency and duration of the response. Comparison of our results with recent data from cortical (area 17) simple cells reveals that the temporal development of LGN cells accounts for a substantial portion of the temporal maturation of simple cells.  相似文献   

15.
1. Eleven kittens were deprived of vision in one eye until the age of between 5 and 14 weeks. Their eyes were then reverse-sutured, they were allowed to survive for a further 3-63 days, and their brains were then examined histologically. 2. Measurement of the cross-sectional area of cells in the lateral geniculate nucleus (LGN) showed that when the reversal of lid suture was performed at the age of 8 or 14 weeks, the mean cell size was smaller in laminae connected to the initially closed right eye than it was in other laminae. 3. When the reversal of lid suture took place at 5 or 6 weeks of age there was a reversal of interlaminar size differences: the initially deprived eye was then connected to laminae containing larger cells. Even within 3 days after the reversal of lid suture, most of the morphological effects of the initial suture had been abolished, and they were fully reversed within 12 days. 4. These results are compared with physiological changes in the visual cortex of these and similarly reared animals.  相似文献   

16.
Effects of saccades on individual neurons in the cat lateral geniculate nucleus (LGN) were examined under two conditions: during spontaneous saccades in the dark and during stimulation by large, uniform flashes delivered at various times during and after rewarded saccades made to small visual targets. In the dark condition, a suppression of activity began 200-300 ms before saccade start, peaked approximately 100 ms before saccade start, and smoothly reversed to a facilitation of activity by saccade end. The facilitation peaked 70-130 ms after saccade end and decayed during the next several hundred milliseconds. The latency of the facilitation was related inversely to saccade velocity, reaching a minimum for saccades with peak velocity >70-80 degrees /s. Effects of saccades on visually evoked activity were remarkably similar: a facilitation began at saccade end and peaked 50-100 ms later. When matched for saccade velocity, the time courses and magnitudes of postsaccadic facilitation for activity in the dark and during visual stimulation were identical. The presaccadic suppression observed in the dark condition was similar for X and Y cells, whereas the postsaccadic facilitation was substantially stronger for X cells, both in the dark and for visually evoked responses. This saccade-related regulation of geniculate transmission appears to be independent of the conditions under which the saccade is evoked or the state of retinal input to the LGN. The change in activity from presaccadic suppression to postsaccadic facilitation amounted to an increase in gain of geniculate transmission of approximately 30%. This may promote rapid central registration of visual inputs by increasing the temporal contrast between activity evoked by an image near the end of a fixation and that evoked by the image immediately after a saccade.  相似文献   

17.
We studied the development of spatial contrast-sensitivity and temporal-frequency selectivity for neurons in the monkey lateral geniculate nucleus. During postnatal week 1, the spatial properties of P-cells and M-cells are hardly distinguishable, with low contrast-sensitivity, sluggish responses, and poor spatial resolution. The acuity of P-cells improves progressively until at least 8 months, but there is no obvious increase in their maximum contrast-sensitivity with age. The contrast sensitivity of M-cells is already clearly higher than that of P-cells by 2 months, and at 8 months of age this characteristic difference between M- and P-cells approaches the adult pattern. There is a major increase in responsiveness during the first 2 postnatal months, especially for M-cells, the peak firing rate of which rises fivefold, on average, between birth and 2 months. Many P-cells in the neonatal and 2-month-old animals did not give statistically reliable responses to achromatic gratings, even at the highest contrasts: this unresponsiveness of P-cells might result from low gain and/or chromatic opponency. The upper limit of temporal resolution in the neonate is low--about one-third of that in the adult. Among M-cells, the improvement in temporal resolution, like that in contrast sensitivity, is rapid over the first 2 months, followed by a slower change approaching the adult value by 8 months of age. The development of contrast sensitivity, responsiveness and temporal tuning are little affected, if at all, by binocular deprivation of pattern vision from birth for even a prolonged period.  相似文献   

18.
1. Visual receptive-field characteristics were determined for 154 cells in the ventral lateral geniculate nucleus (VLG) of cats anesthetized with nitrous oxide. All cells were verified histologically to be within the VLG. Responses of 182 cells from laminae A and A1 of the dorsal lateral geniculate nucleus (DLG) were tested for comparison. 2. The VLG cells could be grouped into one of seven classes according to their responses to light stimulation. Twenty-seven percent of the cells had uniform receptive fields. They responded maximally to stationary stimuli flashed on or off anywhere within the receptive field and showed no evidence for antagonistic surround mechanisms. About 19.5% of the VLG cells had concentric receptive fields. They were similar to the uniform type, with the addition of a concentric inhibitory surround. Eight percent of the VLG cells had ambient receptive fields. These cells were characterized by an unusually regular maintained discharge which varied in rate in relation to the level of receptive-field illumination or of full-field ambient illumination. About 4% of the VLG cells were movement sensitive. They gave little or no response to stationary stimuli flashed on or off in the receptive field, and responded best to a contour moving across the receptive field in any direction. An additional 2.5% of the VLG cells were direction sensitive. Their response was dependent on the direction of stimulus movement through the receptive field. Sixteen percent of the VLG cells had indefinite receptive fields. They responded to whole-eye illumination or to localized visual-field stimulation; however, specific receptive-field properties could not be adequately defined. Approximately 23% of the VLG cells studied gave no convincing response to visual stimulation. 3. Responses of DLG cells agreed with those reported in previous studies. Almost all (97%) had concentric receptive fields, and a few (3%) had uniform receptive fields with no apparent antagonistic surround. None of the DLG cells had receptive fields like those in the other classes found for VLG cells. 4. The VLG cells tended to have large receptive fields; mean diameter was 10.6 degrees of visual arc. This was substantially larger than the diameter of receptive fields for DLG cells. In addition, VLG cells generally required larger stimuli than DLG cells to respond. There was no consistent relationship between receptive-field size and visual-field eccentricity for VLG cells, in contrast to the DLG. Most (57%) VLG cells were driven only by the contralateral eye, 30% were binocularly driven, and 13% were driven only by the ipsilateral eye. 5. A systematic visuotopic organization was present in the VLG. The lower visual field was represented anteriorly in the nucleus and the upper visual field posteriorly. The vertical meridian was represented along the dorsomedial border of the VLG where it abuts the DLG, and the temporal periphery was represented ventrolaterally. 6. Responses to electrical stimulation of the optic chiasm were studied for 55 VLG cells...  相似文献   

19.
20.
The dorsal lateral geniculate nucleus of the thalamus transmits visual signals from the retina to the cortex. Within the lateral geniculate nucleus, the ascending visual signals are modified by the actions of a number of afferent pathways. One such projection originates in the pretectum and appears to be active in association with oculomotor activity. Much remains unknown about the pretectal-geniculate projection. Our purpose was to examine for the first time individual axon arbors from the pretectum that project to the lateral geniculate nucleus, describing their topography and nuclear and laminar targets. We made injections of the anterograde tracer Phaseolus vulgaris leucoagglutinin into the cat pretectum, targeting the nucleus of the optic tract. Serial 40 microns coronal sections were processed by using immunohistochemistry to reveal labeled axons that were then serially reconstructed using light microscopy. Pretectal-geniculate axons appeared morphologically heterogeneous in terms of swelling size, branching patterns, and laminar target. Most axons innervated the geniculate A laminae. A separate, smaller population innervated the C laminae. All axons exhibited substantially greater spread medial-laterally than rostral-caudally in the lateral geniculate nucleus, displaying a topographical organization for visual field elevation, but not azimuth. Many pretectal axons that projected to the LGN also innervated adjacent structures, including the medial interlaminar nucleus, the perigeniculate nucleus, and/or the pulvinar. These results indicate that the projection from the pretectum to the dorsal lateral geniculate nucleus is heterogeneous, is semitopographical, and may coordinate neural activity in the lateral geniculate nucleus and in neighboring visual thalamic structures in association with oculomotor events.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号