首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
粉末预合金化对金刚石工具胎体性能的影响   总被引:1,自引:0,他引:1  
本文通过试验分析研究了铁基粉末预合金化对金刚石工具胎体硬度与抗弯强度的影响.结果表明:预合金粉末烧结温度较低,胎体在750 ℃即可得到高的烧结硬度,为106 HRB,在650 ℃~900 ℃的烧结温度区间内,硬度值变化仅小于4 HRB;而在相同的烧结温度下,相同组分的混合粉末的烧结硬度仅为94 HRB~98 HRB;当烧结温度低于800 ℃时,预合金粉末胎体抗弯强度低于混合粉末胎体;随着烧结温度的升高,二者差距缩小.预合金粉末胎体的最佳结烧结温度区间为750 ℃~850 ℃,在此范围内可得到讲最佳的硬度与抗弯强度匹配.  相似文献   

2.
激光焊接金刚石工具过渡层预合金粉末研究   总被引:4,自引:1,他引:3  
过渡层材料对激光焊接金刚石工具的焊缝强度、外观、性能均有很大影响。为了保证激光焊接金刚石工具的使用性能,过渡层材料应当具有合理的配方组分和优良的烧结性能,本文在这方面进行了一些研究。着重介绍了德国Dr.Fritsch的Diabase—V系列、法国Eurotungstene的NEXT系列、比利时Umicore的Cobalite系列预合金粉末和BASF公司的羰基Fe粉和羰基Ni粉的技术参数,并分别对它们的烧结特性进行了分析。  相似文献   

3.
预合金粉末在金刚石工具中的应用   总被引:1,自引:0,他引:1  
本文简要综述了超细预合金粉末的特性及其制备方法。重点介绍了超细预合金粉末在金刚石工具中的应用现状。指出在金刚石工具中使用超细预合金粉末具有烧结温度低、烧结温度范围广,对金刚石把持力高等优点。分析了超细预合金粉末在金刚石工具中的应用前景。  相似文献   

4.
预合金粉末在金刚石工具中的应用研究   总被引:11,自引:7,他引:11  
本文初步分析研究了预合金粉末在金刚石工具胎体材料中的应用情况,讨论了预合金粉末作为工具胎体材料的优越性能和应用前景,分析发现,只要选择得当,预合金粉末胎体材料的性能可达到钴基胎体材料的性能水平,并且具有切割速度快,寿命长,对金刚石粘结牢固等优点,预合金粉末的应用成功必将推动金刚石工具制造技术的进一步发展。  相似文献   

5.
本对研制出的专门用做金刚石工具胎体材料的预合金粉末(编号TT15)的特性,进行了分析和研究。指出这种TT15粉末是以Fe-Cu-Ni为基并添加适量的其他特种元素雾化而成。其特点是:熔点低,烧结性能好,对金刚石的粘结性能高等,适宜于制造金刚石切割工具。研究还发现,在850℃/18MPa/3min热压工艺条件下,TT15颗粒可与金刚石发生界面反应,在与金刚石颗粒表面接触表面形成反应圆斑,其反应斑深度约为1-2μm,这种反应对金刚石的强度损害很小,可大大提高TT15对金刚石的粘结能力。  相似文献   

6.
金刚石工具预合金胎体粉末制备技术   总被引:15,自引:7,他引:8  
讨论了预合金胎体粉末的优点,研究了预合胎体粉末的制备技术,列举了预合金胎体金刚石工具的应用效果。  相似文献   

7.
为改善铁基胎体粉末在金刚石工具制造时的应用情况,通过力学实验,研究新型铁铜合金粉体材料对金刚石工具胎体抗弯强度和切割性能的影响。实验结果显示:较单质混合粉体材料,新型铁铜合金粉体材料的烧结温度略微降低;胎体在870℃时获得高的抗弯强度,为334.85 MPa,比单质混合粉高出11%;烧结硬度为61.72 HB,高于混合粉末12%。铜元素的预合金化行为和更为均匀弥散的分布,使金刚石工具胎体材料强度提高显著,切割性能大幅度上升,通过对相同配方单质混合粉末和新型铁铜合金粉末胎体材料切割性能的比较发现,新型铁铜合金粉体材料锋利度提高20%。  相似文献   

8.
采用超细钨铜合金粉末和单质钨、铜粉末热压烧结成两组金刚石胎体块,利用硬度计,排水法,万能实验机,扫描电镜和锯切实验等测试分析手段分别分析测量了胎体的硬度、致密度、抗弯强度、断口形貌和锯切性能。实验结果表明:在高钨基胎体配方中添加超细钨铜合金粉末比添加单质钨、铜粉末可以显著提高胎体的硬度10 HRB左右,改善胎体合金使之均匀化,在本实验配方中,干切硬花岗岩时,高钨基胎体配方中添加超细钨铜合金粉末比添加单质钨、铜粉末切割平稳,形成胎体和金刚石有效的磨损匹配,可以显著提高工具的使用寿命30%左右。烧结温度范围内,添加合金粉的胎体抗弯强度均比添加单质钨、铜粉末低100 MPa左右,这主要是使用的超细钨铜粉末的氧含量较高所致。  相似文献   

9.
通过增加钴、镍、铬、钛的比例可以提高胎体对金刚石的把持力,从而达到提高金刚石工具寿命的目的,但是过硬的胎体降低工具的切削效率.为解决寿命和效率的矛盾,采用预合金粉末替代单质金属粉加入胎体粉中热压烧结,使得胎体粉和金刚石颗粒之间形成钎焊连接.简述了金刚石工具中人造金刚石的存在状态,分析了金刚石从出刃、刻划、切削、磨损、暴露、破碎到脱落的使用寿命过程,指出工具使用中大量的金刚石并非磨损失效,而是以破碎、脱落形式流失.分析了金刚石脱落、流失的主要原因是金刚石把持力不够导致了金刚石早期脱落.研究结果表明:预合金粉末法可以实现胎体与金刚石的钎焊连接,预合金粉末的成分和热压烧结工艺决定了对金刚石的钎焊连接的效果.应用结果显示:预合金粉末中含有强碳化物形成元素,预合金粉与金刚石的亲和力强,在烧结过程中可以实现胎体与金刚石的钎接,使金刚石的出刃高度大大提高;预合金粉的熔化温度区间与烧结温度相匹配,避免了刀头的毛刺、飞边,减小裂纹发生倾向.  相似文献   

10.
金刚石工具胎体预合金粉末制取与应用   总被引:1,自引:1,他引:0  
预合金粉末是采用多种金属熔炼成低熔点合金后再喷制成的粉末,其制取可以用雾化法和湿法冶金等工艺生产.文中介绍了气体雾化法预合金粉末的工艺过程;描述了湿法冶金制取预合金粉末的工艺流程.分析了预合金粉末胎体金刚石工具的优点,说明了国外预合金粉末技术现状和发展趋势,剖析了国内预合金粉末及工具的研究情况,探讨了金刚石地质钻头胎体用预合金粉末的制取和实际应用情况,研究了切割花岗岩的预合金粉末胎体金刚石锯片.  相似文献   

11.
Increasing attention is being paid to micro metal injection molding as a manufacturing technology for miniature part. W-Cu nanocomposites have been used as heat sink and packaging materials in microelectronic devices. A micro injection molding technique will provide and appropriate tool to fabricate W-Cu nanocomposite materials for microcomponents. In the present study, a fundamental investigation of micro metal injection molding using W-Cu nanocomposite powder is reported. The densification behavior of W-Cu nanocomposite was examined in order to confirm the shape stability of microcomponents.  相似文献   

12.
Carbides are necessary component part of the structure in high-speed steels. The wear resistance, heat resistance, and strength of these steels markedly depend on the amount of carbides, the ratio between different types of carbides, and their states. The aim of the present work is to study the phase composition of carbide precipitates obtained from atomized powder and the corresponding tungstenless powder high-speed steel of the type M5F5.Translated from Metallovedenie i Termicheskaya Obrabotka Metallov, No. 6, pp. 23–26, June, 1994.  相似文献   

13.
The forging of powder metal compacted preforms to full density has evolved as an extension of the conventional powder metal process. Indentification and evaluation of the variables in the powder forging process is required to optimize each step of the process, from the powder to the product. Optimization leads to both maximum product quality and minimum process variation.  相似文献   

14.
15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号