首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
采用非织造加工工艺,将玄武岩纤维和聚丙烯纤维通过开松混合后梳理成网,然后按照一定的尺寸制成预制件,使用模压成型工艺制备玄武岩/聚丙烯复合材料,研究不同比例的玄武岩纤维和聚丙烯纤维对复合材料力学性能的影响,并通过数学方差分析方法确定了影响因素的显著性.结果表明:当玄武岩纤维和聚丙烯纤维的比例为30/70时,复合材料的拉伸、弯曲强度和模量达到最高,最大拉伸强度、弯曲强度分别为92.998 MPa和156.134 MPa,最大拉伸和弯曲模量分别为3.400 GPa和1.288 GPa.  相似文献   

2.
为提高路面板材料的力学性能,以超高分子质量聚乙烯(UHMWPE)为基体树脂、连续玻璃纤维织物为增强体,通过设计挤出模头,釆用熔融浸渍工艺和层压工艺,制备连续玻璃纤维增强UHMWPE复合材料层压板.研究玻璃纤维体积分数(30%、40%、50%和55%)对UHMWPE复合材料拉伸、层间剪切、冲击等性能的影响规律,测试分析不同纤维体积含量条件下的UHMWPE复合材料热性能的变化规律.测试结果表明:当玻璃纤维体积分数分别为50%、40%时,UHMWPE复合材料拉伸强度和层间剪切强度分别达到最大值,分别为675.9 MPa和23.13 MPa,证明增加玻璃纤维的体积含量可有效提高UHMWPE复合材料冲击强度.当温度分别低于70℃和91℃时,UHMWPE复合材料的储能模量与损耗模量随着纤维体积含量的增加而增加.提高UHMWPE复合材料的纤维体积含量,可在一定程度上提高其玻璃化温度.  相似文献   

3.
采用连续玻璃纤维与环氧树脂相复合,通过金属模压成型工艺,制备出单向玻璃纤维/环氧树脂复合材料。通过三点弯曲实验论证单向纤维对树脂基体的增强作用,从而研究不同纤维含量下复合材料的弹性模量、纵向拉伸强度、纵向压缩强度的变化趋势。结果表明:随着纤维含量的增加,复合材料的力学性能均增强,当纤维体积含量为50%时,其各项性能均较好,弹性模量为40GPa,纵向拉伸强度为1200MPa,纵向压缩模量为700MPa。此外,对复合材料的其他常用力学性能参数进行检测。  相似文献   

4.
为了将磷石膏资源化利用,将40℃下烘干处理的磷石膏与聚丙烯颗粒混合后,再添加少量液体石蜡,经过热压成型制备了磷石膏/聚丙烯复合材料.在所制备复合材料中磷石膏至少占50%以上,增大了磷石膏的消耗量;并且在材料制备工艺中磷石膏预处理方法简单易行,增加了整个制备工艺的可行性.结果表明,磷石膏/聚丙烯复合材料密度随原料中磷石膏掺量增加而增大,磷石膏掺量为50%时,视密度每立方厘米1.089克;磷石膏掺量为80%时,视密度每立方厘米1.405克.磷石膏/聚丙烯复合材料的弯曲强度随着磷石膏掺量增加而增大,磷石膏掺量为80%时弯曲强度可达14.3MPa.但所制备磷石膏/聚丙烯复合材料样品的脆性较大,拉伸强度较低,与磷石膏的掺量无明显的相关性,磷石膏掺量为70%时拉伸强度1.7MPa,适用于要求塑性变形小的场合.所制备复合材料还有另一显著特点是耐水性很好,无论原料配比如何其软化系数均在1.0以上,从而克服了一般石膏制品耐水性差的缺点.最佳成型制度为成型温度160℃,成型压力15MPa.  相似文献   

5.
采用光引发接枝的方法将乙烯基硅烷接枝到聚丙烯上制备硅烷接枝聚丙烯(VS-g-PP),并用红外光谱对接枝物进行表征.研究单体浓度和光照时间等因素对接枝率的影响.结果表明:随着单体浓度和光照时间的增加,VS-g-PP的接枝率先增大后减小.在单体浓度为0.220mol/L,光照时间3h条件下,接枝率达到了2.3%.随后以VS-g-PP作为界面相容剂,通过转矩流变仪制备聚丙烯/黄麻纤维复合材料,研究VS-g-PP用量及接枝率对聚丙烯/黄麻纤维复合材料拉伸性能的影响,并对加入与不加VS-g-PP的复合材料的耐水性进行了比较.结果表明:加入VS-g-PP后,复合材料的拉伸强度增大,耐水性也提高.在VS-g-PP质量分数为6%时,复合材料的拉伸强度从29.3MPa提高到42.5MPa,提高了45.1%.扫描电镜对拉伸断口进行的分析表明,VS-g-PP使黄麻纤维和聚丙烯之间的界面结合得到了改善;DSC对复合材料进行分析的结果表明,加入界面相容剂后,复合材料的结晶度下降.  相似文献   

6.
低温煅烧微硅粉并用硅烷偶联剂Si69对其进行改性.分别将未改性和改性微硅粉作为无机填料与聚丙烯混合后制备复合材料.未改性微硅粉掺入量为复合材料总质量的2%,改性微硅粉掺入量分别为总质量的1%、2%、3%、4%及5%,并分别在155℃、168℃、175℃温度下制备试样.测试各试样的拉伸强度、断裂伸长率、弯曲强度、冲击强度,观察其断裂面的形貌,并进行红外检测,以研究改性微硅粉在不同掺量下对聚丙烯性能的影响.结果表明:改性微硅粉占复合材料质量分数的2%时复合材料的拉伸强度、弯曲强度及冲击强度得到改善;未改性或改性微硅粉加入量大于4%时会降低以上强度;用热压成型制备试样时,温度高于168℃即可成型良好.  相似文献   

7.
采用热压成型方法制备了不同质量分数氧化锌晶须(ZnOw)尼龙1010(PA1010)复合材料,对复合材料的力学性能和摩擦学性能进行了试验研究,分析了复合材料的磨损机理.结果表明,填充ZnOW可以增加尼龙的压缩强度和弹性模量;提高并稳定尼龙复合材料的摩擦系数,增强复合材料的抗磨损性能.纯尼龙随着载荷的增大摩擦系数急剧降低,磨损率上升,而复合材料的摩擦系数和磨损率受载荷的影响较小.当ZnOw质量分数达到15%时,复合材料的摩擦系数最高,磨损率最低.纯尼龙的磨损随着正压力的增加由磨粒磨损和轻微黏着磨损转变为热破坏.ZnOw/PA复合材料随着ZnOw质量分数的增加,磨损由黏着磨损,转变为犁沟、疲劳断裂和转移膜的反向转移.  相似文献   

8.
为研究不同质量分数的玻璃纤维对增强聚丙烯复合材料力学性能的影响,选择直径为10μm的玻璃纤维制备复合材料小样.测试在不同质量分数时材料的拉伸强度、弯曲弹性模量等力学性能,并应用扫描电镜(SEM)对其微结构进行表征.结果表明:玻璃纤维质量分数对复合材料的取向分布有很大影响,随着玻璃纤维质量分数增加,拉伸强度增大,但弯曲弹性模量、弯曲强度变化不明显.此外,随着质量分数的增加,复合材料的脆性变大;SEM分析表明复合材料中玻璃纤维有一定的取向且分布相对均匀,玻璃纤维和复合材料基体结合良好.  相似文献   

9.
以γ型硅酸二钙(以下简称γ-C_2S)为基体,以锆钛酸铅(PZT)为压电相,用压制成型、碳化养护方法制备出0-3型γ-C_2S压电复合材料。分析了压电相体积分数及粒径分布、成型压力、碳化时间和极化时间对复合材料压电性能的影响,结果表明:复合材料压电性能在一定范围内随着压电相体积分数、成型压力、极化时间的增加而提高。在压电相体积分数从40%增加到85%时,复合材料压电应变常数d_(33)从4.78 pC/N提升到67.8 pC/N;在压电相体积分数保持为60%,成型压力从50 MPa增加到200 MPa时,复合材料压电应变常数d_(33)从14.6 pC/N提升到17.8 pC/N;在保持体积分数、成型压力一定时,极化时间为30 min较15 min复合材料具有更高的压电应变常数。同时,合理的颗粒级配对复合材料的压电性能也有显著的提升,当压电相体积分数为60%时,压电相陶瓷颗粒采用大颗粒、小颗粒混掺时复合材料压电性能得到显著提升,压电应变常数较只有小颗粒提升了1倍,达到33.9 pC/N。  相似文献   

10.
通过熔融共混法制备淀粉/低密度聚乙烯/黄麻纤维复合材料(S/LDPE/F).考察乙二醛的加入对复合材料拉伸性能和耐水性的影响.结果表明:乙二醛的加入有效地提高了复合材料的拉伸强度,当乙二醛的加入量为5%(质量分数)、压片反应时间为5min时,拉伸强度达到21.5 MPa,比相同条件下制备的未加乙二醛的复合材料拉伸强度(6.25 MPa)提高了244%;加入乙二醛后复合材料的耐水性也有所提高;XRD结果显示:加入乙二醛后淀粉的结晶被进一步破坏.拉伸断口扫描电镜照片表明:乙二醛的加入使黄麻和塑化后淀粉之间的界面结合得到了改善.  相似文献   

11.
用挤压铸造工艺得到了拉伸强度比较高并且强度数据分散度比较小的莫来石纤维/ZL 109复合材料.用Weibull方法分析该复合材料的拉伸强度值的分布状况,得到比较大的Weibull模量.统计分析了复合材料金相面上的纤维体积分数和拉伸断口面上的纤维体积分数,结果表明,纤维的分布在微观上是不一致的;在金相面上,与观察法线呈中角度的纤维体积分数Afs同与观察法法线成大角度的纤维体积分数Af1比较接近;在拉伸断口面上与拉伸方向呈大角度的纤维体积分数同与拉伸方向呈小角度的纤维体积分数相差较大.认为该复合材料破坏的主要原因是在于与拉伸方向呈大角度的纤维与基体的界面脱粘.拉伸强度数据分散的原因在于微观上与拉伸方面呈大角度的纤维分布的不均匀.  相似文献   

12.
通过对添加石墨的聚四氟乙烯(PTFE)复合材料进行拉伸试验,考察石墨的添加量对改性复合材料拉伸强度的影响.得到了试样的拉伸强度及其拉伸性能曲线.试验结果表明,石墨的添加量对改性PTFE的性能影响很大.当石墨体积分数为24%时,改性PTFE复合材料的拉伸强度较纯聚四氟乙烯降低了48%,仅为12.2 MPa;随着石墨含量的继续增加,改性PTFE复合材料的力学性能持续明显降低.  相似文献   

13.
采用熔融共混法制备了煤矸石粉填充的聚丙烯(PP)复合材料,并加入聚丙烯-马来酸酐接枝物(PP-g-MA)进行改性,研究了二元(PP+煤矸石粉)及三元(PP+煤矸石粉+PP-g-MA)复合材料的熔体流动性、力学性能和断裂行为.结果表明:煤矸石粉质量分数小于30%时,对二元复合材料的拉伸屈服强度和熔体流动性影响不大;PP-g-MA质量分数为3%左右时,能够提高三元复合材料的拉伸强度和冲击强度;PP-g-MA质量分数增大至5%时,三元复合材料的比基本断裂功明显高于二元复合材料.  相似文献   

14.
以六氯环三磷腈(HCCTP)、苯酚、碳酸钾为原料,四正丁基溴化铵(TBAB)为相转移催化剂,氯苯为溶剂,合成了六苯氧基环三磷腈(HPCTP).采用红外光谱技术对产物进行了表征,并将HPCTP首次应用于聚丙烯/聚烯烃弹性体/滑石粉复合体系,制备了无卤阻燃的聚丙烯改性塑料.结果表明,HPTCP对复合体系具有较好的阻燃作用.复合体系的缺口冲击强度和断裂伸长率随着阻燃剂用量的增加而下降,弯曲强度随着阻燃剂含量的增加而增加,拉伸强度随着阻燃剂含量的增加而先增后降.当HPCTP的质量分数为10%时,阻燃聚丙烯/聚烯烃弹性体/滑石粉复合体系的氧指数达到25.6%,冲击强度为15.1kJ/m2,弯曲强度为34.2MPa,拉伸强度为23.9MPa,断裂伸长率为59.1%,该材料的综合性能最佳.  相似文献   

15.
为研究粉煤灰和聚丙烯纤维掺量对混凝土抗压、抗折强度的影响,掺入为胶凝材料质量分数0、10%、20%的粉煤灰和0、0.23%、0.45%的聚丙烯纤维制备混凝土试件,并进行抗折、抗压试验。试验结果表明:聚丙烯纤维质量分数为0时,混凝土抗压强度随粉煤灰质量分数的增加而提高;聚丙烯纤维质量分数为0.23%和0.45%时,混凝土抗压强度随粉煤灰质量分数的增加而先提高后降低;同时掺入粉煤灰和聚丙烯纤维时,随着两种材料掺量的增加,混凝土的抗折强度均呈先提高后降低趋势;当粉煤灰质量分数为10%、聚丙烯纤维质量分数为0.23%时,混凝土试件抗压强度和抗折强度分别为42.5、7.2 MPa。  相似文献   

16.
新型大麻纤维复合材料的制备   总被引:2,自引:0,他引:2  
采用大麻纤维下脚料、聚酯纤维和ES纤维作为原材料,在传统非织造布设备上采用热风法制备无纺毡,再对其进行热压成型制得大麻纤维复合型材,对ES纤维含量与成型工艺参数对型材力学性能的影响进行探讨.结果表明,随着ES纤维、成型温度和成型时间的增加,大麻纤维复合板材的拉伸强度和弯曲强度先增加后下降:大麻纤维复合板材的最优加工工艺为:ES纤维质量分数45%,成型温度195℃,成型时间6min.成型压力2.5MPa.  相似文献   

17.
低温煅烧微硅粉并用硅烷偶联剂Si69对其进行改性,再分别将未改性和改性微硅粉作为无机填料与聚丙烯混合后制备复合材料。未改性微硅粉掺入量为复合材料总质量的2%,改性微硅粉掺入量分别为总质量的1%、2%、3%、4%及5%,并分别在155℃、168℃、175℃温度下制备试样。测试各试样的拉伸强度、断裂伸长率、弯曲强度、冲击强度,观察其断裂面的形貌,并进行红外检测,研究改性微硅粉在不同掺量下对聚丙烯性能的影响。结果表明:改性微硅粉占复合材料质量分数的2%时复合材料的拉伸强度、弯曲强度及冲击强度得到改善;未改性或改性微硅粉加入量大于4%时会降低以上强度;用热压成型制备试样时,温度高于168℃即可成型良好。  相似文献   

18.
以玄武岩纤维、微胶囊和水泥为原料,制备具有自修复功能的微胶囊玄武岩纤维-水泥复合材料.采用三点弯曲法对复合材料试样进行断裂能测试,研究纤维掺量、纤维长度、微胶囊质量分数和水灰质量比对断裂能的影响,研究复合材料的抗折强度、抗压强度与断裂能的关系.结果显示,复合材料的断裂能随着纤维掺量的增加而增加,当纤维掺量为10 kg/m3时,断裂能达到107.89 N/m;断裂能随纤维长度的增加呈较小幅降低;断裂能随微胶囊质量分数的增加呈先增后降趋势,当微胶囊质量分数为2%时,断裂能达到最大值;断裂能随水灰质量比的增加而降低;断裂能与抗折强度有一定的线性关系,与抗压强度关系不明显;材料经损伤后修复,断裂能修复率为80.15%,恢复率为95.52%.  相似文献   

19.
采用二步法制备不同纤维掺量的短切芳纶纤维增强水泥砂浆试样,研究添加剂羧甲基纤维素钠(CMC)和硅微粉对复合材料力学性能的影响.结果表明:羧甲基纤维素钠能够有效地促进纤维在水中的分散,进而促进其在水泥砂浆中的分散;掺加一定量的硅微粉能够进一步提高试样的压缩强度.当纤维体积分数为5%时,试样的力学性能最好,弯曲强度从2.6 MPa提高到了8.3 MPa,压缩强度也从29.5 MPa提高到了54.3 MPa.  相似文献   

20.
本文将改性的苎麻与树脂混纺或混织的织物在热压机上压制成苎麻纤维与树脂的复合板材。研究了织物组织结构、PP纱线在织物纬向上的含量等对苎麻/PP增强复合材料拉伸性能的影响。结果显示,对于混织预制体,当层数为5层,模压温度为175℃,模压压力为10MPa,苎麻/PP为1:1时,板材的拉伸性能最优,拉伸强度是83.03MPa;并且,由于斜纹组织的纱线伸直状态最好,所以其复合材料的机械性能优于缎纹组织和平纹组织复合材料。对于混纺预制体,模压温度为170℃,压力为12.5MPa,模压时间为20min,苎麻纤维体积分数为50%时,复合材料的拉伸性能最优,对于不同组织的织物,缎纹组织的复合材料的拉伸性能最好。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号