首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
研究了不同回火工艺对460 MPa级低碳成分设计高强钢组织和性能的影响情况,结果显示:随着回火温度的升高,拉伸曲线出现屈服平台,组织内形成多边形铁素体,延伸率明显提升,强度有所下降。通过研究不同回火工艺和力学性能的应用关系,可有效提升460 MPa级低碳高强钢的塑性,改善钢板加工性能,以满足工程机械类用户的技术要求。  相似文献   

2.
针对工业生产700 MPa级高强度调质态钢板,通过Gleeble3500热模拟机进行模拟焊接试验,利用光学显微镜、硬度仪、场发射扫描电镜等设备对比研究了稀土Ce对高强钢焊接热影响区(HAZ)显微组织、晶粒度和力学性能的影响。研究结果表明,焊接热输入为25 kJ·cm?1和50 kJ·cm?1时,无稀土钢焊接热影响区冲击功分别为84.8 J和24.5 J,Ce质量分数为0.0018%的钢焊接热影响区冲击功分别为110.0 J和112.0 J,因此钢中加入适量Ce能够有效改善钢板焊接韧性。对比分析两种实验钢焊接热影响区晶粒尺寸和显微组织可以看出,随着焊接热输入值增大,高强钢焊接热影响区显微组织均逐渐从马氏体、下贝氏体转变为上贝氏体和粒状贝氏体组织,且奥氏体晶粒尺寸明显增大。但相同焊接热输入下,含Ce钢焊接热影响区晶粒尺寸显著减小,组织更加细小,且脆性的上贝氏体组织减少,从而显著提高了700 MPa级高强钢的焊接性能。   相似文献   

3.
为了实现高强度级别水电工程用钢的工业应用,研究了 800 MPa级高强水电钢的焊接性能,分析了预热温度、焊接方式对不同厚度规格钢板冷裂纹倾向和焊接接头力学性能的影响.结果表明:当焊接预热温度为70℃时,可以保证钢板不出现冷裂纹且具有良好的焊接工艺适应性.采用两种焊接方式的焊接接头力学性能均满足标准要求.  相似文献   

4.
根据700MPa级高强工程机械用钢技术条件,通过设计合理的成分体系和严格的控轧控冷工艺,成功开发出具有良好强韧性匹配以及焊接性能的SQ700MCD高强工程机械用钢。首钢SQ700MCD高强工程机械用钢热轧板卷采用低成本Ti微合金化成分设计,通过严格控制钢中的P、S、N含量得到稳定的有效Ti,添加一定量的Nb得到细小均匀的铁素体晶粒,采用合理的TMCP工艺参数保证了材料具有良好的强韧性,并依靠Mo和B复合添加显著提高了焊接热影响区的抗拉强度。重点介绍技术背景、产品设计思路、材料组织结构和析出物状态,以及材料各项力学性能和焊接性能。  相似文献   

5.
介绍了首钢SQ700MCD高强工程机械用钢热轧板卷成分体系设计,并探讨了TMCP(控轧控冷)工艺参数对材料组织、析出物状态以及力学性能的影响规律。  相似文献   

6.
吴刚  吴宁 《包钢科技》2021,47(4):39-42
文章明确了窄搭接焊接原理及焊缝质量判断方法,对该材质带钢快速冷却产生的各种马氏体时的硬度影响分析与碳素钢快速冷却相变CCT图综合分析,经过焊接参数调整,增加焊缝退火工序,焊缝杯突试验结果合格,拉伸试验在非焊缝处断裂,实际生产该焊缝质量合格.  相似文献   

7.
李浩  薛越  戴鑫  张军  柳婕  黄利 《包钢科技》2023,(5):66-70
通过Gleeble-3800试验机进行焊接过程热模拟,得出了Q1100D钢冷却过程中的CCT曲线。采用斜Y坡口焊接冷裂纹试验、金相分析和力学性能测试等方法,对不同热输入下焊接接头组织与性能进行了检测,结果表明包钢Q1100D重型机械超高强吊臂钢具有较好的抗冷裂性能。小热输入条件下可以实现室温下不预热焊接;较大热输入条件下,表面和断面未见冷裂纹,说明Q1100D钢板具有较好的抗冷裂性能。接头综合力学性能与组织性能评价结果表明,14 mm厚Q1100D钢板在1.05 kJ/mm的热输入下,焊接接头力学性能(拉伸、弯曲、冲击)处于最优状态。  相似文献   

8.
针对1种800MPa级高强钢的调质过程,分析了不同淬火温度和回火温度对实验钢力学性能和组织的影响。结果表明:淬火温度在880~920℃之间时,随着淬火温度升高,实验钢的强度逐渐降低,-40℃冲击韧性是先升高后降低,并在900℃达到最大;回火温度在550~700℃之间,随着回火温度的升高,实验钢的强度逐渐下降,-40℃冲...  相似文献   

9.
采用低碳当量成分设计,开发了一种1 100 MPa级别超高强度工程机械用钢。对不同回火温度条件下的试验钢的力学性能进行了实验研究,同时也对试验钢的焊接性进行了实验研究。结果表明:试验钢淬火后,经回火温度200~250℃,回火时间30 min,具有较高强度与良好低温冲击韧性,且具有良好的焊接性能。  相似文献   

10.
涟钢700MPa级高强钢研发过程中,曾出现脱磷、窄成分控制困难,全氧含量、夹杂物等级偏高,钢包不自开、中间包过热度不稳定,铸坯纵裂纹、铸坯低倍差和铸坯断坯等一系列问题。本文结合生产现场实际工况,通过分析、试验及优化工艺,实现700MPa级高强钢的稳定、批量生产,保证了产品的质量要求。  相似文献   

11.
12.
通过杯突试验、表面质量观察、焊缝金相组织分析,研究了800MPa级TRIP钢的焊接工艺性能。实验结果表明,焊接前无需预热处理;随着焊接电流的降低,焊缝表面起皮缺陷减轻;采用低电流、低焊接速度的合理匹配,并投入后退火工艺,焊缝熔合线区金相组织为贝氏体,可获得合格的杯突试验和优异的焊缝表面质量;试验钢焊接工艺选择与普材搭接焊接可获得最佳焊缝质量焊缝。  相似文献   

13.
张亮亮  于洋  李晓军  史震 《中国冶金》2022,32(12):106-112
为了探究卷取过程热轧带钢的氧化铁皮和组织性能的变化规律,采用扫描电镜、电子探针、光学显微镜、透射电镜和拉伸试验机等研究了不同卷取温度和冷却方式对600 MPa级热轧带钢表面质量和组织性能的影响。结果表明,650、600℃卷取温度下,与缓慢冷却方式相比,采用快速冷却方式可有效改善热轧带钢表面氧化铁皮的结构,使氧化铁皮中FeO比例提高10%~15%,氧化铁皮厚度下降25%~30%,同时有效减弱热轧带钢表面氧化铁皮与基体界面硅元素和锰元素富集;不同冷却工艺下热轧带钢中的晶粒尺寸相近;650℃卷取+快速冷却工艺下热轧带钢的屈服强度最高,试样断口的位错密度最高,但断后伸长率并未明显下降。  相似文献   

14.
TMCP工艺生产700MPa级高强板,一般采用低碳贝氏体钢设计,主要通过低碳贝氏体的组织强化,从而得到高强度高韧性的综合性能,重点就不同的组织形式对性能的影响进行了分析研究。  相似文献   

15.
采用正交试验方法,对690 MPa级海洋工程用钢的热处理工艺进行研究,分析不同热处理参数对其力学性能的影响,进而确定合理的热处理工艺。试验结果表明:对试验钢强度和塑性影响最明显的因素是回火温度和回火时间,其次是淬火温度和淬火介质;力学性能较好的热处理方案为淬火温度880℃,回火温度630℃。  相似文献   

16.
研究了不同回火温度对700 MPa级钢板组织与力学性能的影响,利用光学显微镜(OM)、扫描电镜(SEM)等设备对试验钢的微观组织进行观察。结果表明:回火温度对试验钢性能有显著影响。随着回火温度的升高,试验钢的屈服强度和抗拉强度均表现为先升高、后降低,低温冲击韧性改善。600℃回火时,试验钢出现回火脆性。使用电子背散射衍射(EBSD)技术,分析了回火前、后的晶界特征及取向差异。分析认为:回火前、后力学性能的变化与析出强化、位错强化等强化机制有关。  相似文献   

17.
介绍了700 MPa级汽车边梁用钢产品的成分设计、冶炼工艺、轧制工艺以及产品的性能,研究了不同卷取温度对带钢力学性能的影响。结果表明:随卷取温度降低,抗拉强度和屈服强度略有升高;卷取温度600℃时,延伸率达到最大值为27.7%。对工业试制产品进行了性能检测,结果表明,试制的700M Pa级高强钢的平均屈服强度为650 M Pa,平均抗拉强度为739 M Pa,平均延伸率达到26.7%,具有高的抗拉强度和良好的成型性能,满足700 MPa级高强汽车边梁用钢的性能要求。  相似文献   

18.
以屈服强度960MPa级高强调质钢板开发为目标,研究了淬火热处理制度对试验钢显微结构及力学性能的影响.结果表明:再加热淬火温度及保温时间决定了合金元素的溶解分布状态以及原奥氏体晶粒尺寸,最终影响了试验钢的综合力学性能,当淬火温度为900℃,保温15~25 min左右时试验钢具有优良的性能,即屈服强度Rp0.2=1110 MPa,抗拉强度Rm=1 140 MPa,伸长率A=14%,-40℃冲击功Akv=130J,各项指标均满足国标GB/T16270-2009的要求.  相似文献   

19.
采用超低碳和低Cr、Mo、Ni等的经济型成分设计,研究了控轧、冷却和终冷温度等工艺参数对超高强钢显 微组织和力学性能的影响规律。在实验室条件下,可获得抗拉强度1 000 MPa以上,-40℃冲击值148~236 J超 高强韧性钢板,显微组织以细小的超低碳贝氏体板条为主。富含高密位错和亚结构的上/下贝氏体、较多残余奥氏 体薄膜、细小弥散M/A组织和第二相粒子,这对于超高强钢韧、塑性的提高起到关键的作用。在某宽厚板生产线 首次实现了1 000~1 200 MPa级高韧性工程机械钢板的工业化生产,并成功应用于矿山机械关键构件的制造。  相似文献   

20.
针对汽车轻量化发展需求,河钢集团邯钢公司成功研制出1 000 MPa级高强贝氏体钢。本文考察了退火模拟实验中各关键工艺参数对实验钢性能的影响,根据退火规律制定工艺方案,并应用于工业化生产。结果表明,贝氏体含量随着快冷完结温度升高而逐渐增多;当快冷完结温度为400℃时,实验钢的强度随均热温度和缓慢冷却完结温度的降低而减小。通过工业试制成功开发出屈强比大于0.8的1 000 MPa级贝氏体钢,其成形极限实验结果表明,在单向拉伸情况下,此材料最大主应变和最大次应变分别为0.29和-0.07,其成形极限危险点(FLD0)的应变值为0.13;在等双向胀形情况下,主次应变为0.36。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号