首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.
Partial acidulation of phosphate rock (PR) or compaction of PR with soluble P fertilizers can improve the usefulness of unreactive PR for use as P fertilizer. A greenhouse study was conducted to evaluate nonconventional phosphate fertilizers derived from a low reactive Sukulu Hills PR from Uganda. Raw PR (which contained 341.0 g kg–1 Fe2O3), beneficiated or concentrate PR, partially acidulated PR (PAPR) and PR compacted with triple superphosphate (TSP) were evaluated. Compacted materials had a P ratio of PR:TSP = 50:50. PAPR materials were made by 50% acidulation with H2SO4. TSP was used as a reference fertilizer. Fertilizers were applied to an acidic (pH = 5.4) Hiwassee loam (clayey, kaolinitic, thermic Rhodic Kanhapludults) at rates of 0, 50, 100, 200, 300 and 400 mg P kg–1 soil. Two successive corn (Zea mays L.) crops were grown for 6 weeks. Compacted concentrate PR + TSP and raw PR + TSP were 94.4 and 89.7% as effective as TSP, respectively, in increasing dry-matter yields for the first corn crop. PAPR from the concentrate was 54.8% as effective as TSP. Raw PR, concentrate PR and the PAPR from the raw PR were ineffective in increasing dry-matter yields. The same trends were obtained when P uptake was used to compare effectiveness. Ineffectiveness of the raw PR and its corresponding PAPR was attributed to a high Fe2O3 content in the raw PR. Bray I and Pi paper were found to be nearly equally suitable at estimating available P in the soils treated with responsive fertilizer materials. Mehlich 1 overestimated available P in soil treated with raw PR, concentrate PR or the PAPR from the raw PR.  相似文献   

2.
Phosphate rocks partially acidulated either with H3PO4 or H2SO4 were compared against SSP or TSP as phosphate fertilizers for permanent pasture. Eleven field trials were conducted over periods of up to 6 yrs. Fertilizers were surface applied annually. Initial soil pHw values ranged from 5.5–6.3 and Soil P retention from 25% to 97%. The PRs used for partial acidulation were unground or ground North Carolina PR, ground Khouribga PR, and a blend of ground PRs of North Carolina, Arad and Khouribga PRs. From the DM yields, fertilizer substitution values were calculated: fertilizer substitution value was the ratio of total P applied as superphosphate to total P as PAPR required to produce the same DM yield.Rates of dissolution of the PR component of PAPRs were also determined in soils collected from two trials.Agronomic results demonstrated that 30% acidulated phosphoric PAPRs (about 50% of total P as water-soluble P) were as effective as TSP, when the PR acidulated was from unground North Carolina PR. Results from one field trial indicated that when PAPR was from ground North Carolina PR, 20% acidulated product (water-soluble P 30–40% of total P) was equally effective as TSP. Replacement of ground North Carolina PR by a less reactive Khouribga PR did not appear to decrease the yield. Results indicated that per unit P released into soil solution, PAPRs were more efficient fertilizers than TSP. With annual applications, fertilizer substitution value of PAPR 30% tended to increase with time.Sulphuric PAPRs prepared from North Carolina PR were generally inferior to phosphoric PAPRs containing similar amounts of water-soluble P. This was attributed to the presence of CaSO4 coatings.Abbreviations DM Dry matter - PAPR Partially acidulated phosphate rock - PR Phosphate rock - SSP Single superphosphate - TSP Triple superphosphate  相似文献   

3.
Four greenhouse experiments were conducted using three soils to determine the availability to plants of P from unground North Carolina phosphate rock (PR) treated with 20% to 50% of the H3PO4 required for complete acidulation. The influences of soil P retention, P status, the method of preparation of partially acidulated phosphate rocks (PAPRs) and the granule size of the products were investigated. Perennial ryegrass was grown as the test plant for up to 8 months. Triple superphosphate (TSP) was used as the standard fertilizer and unground North Carolina rock was included for comparison.The dry matter yield and P uptake response curves showed that in all experiments PAPRs were markedly superior to the PR. P status of soils appeared to influence the effectiveness of PAPRs to a greater extent than P retention. In soils of low P status the degree of acidulation required for PAPR to be nearly or as effective as TSP was 50% whereas in a soil of high P status even 30% PAPR applied as a maintenance fertilizer was effective. There was a significant positive correlation between water soluble P of fertilizers and P uptake by ryegrass. However, in general PAPRs were more effective per unit of water soluble P than TSP. Granule size (< 1 mm and 1–2 mm) and method of preparation of PAPRs did not alter the effectiveness of PAPRs.  相似文献   

4.
Agronomic evaluation of modified phosphate rock products   总被引:1,自引:0,他引:1  
Phosphorus (P) is critically needed to improve the soil fertility for crop production in large areas of developing countries. The high cost of conventional, water-soluble P fertilizers constrains their use by resource-poor farmers. Finely ground phosphate rock (PR) has been tested and used as a direct application fertilizer on tropical acid soils as a low-cost alternative where indigenous deposits of PR are located. However, direct application of PR with low reactivity or with inappropriate soil/crop combinations does not always give satisfactory results. Partial acidulation of PR (PAPR) or compaction with triple superphosphate (PR + TSP) or single superphosphate (PR + SSP) represent technologies that can be used to produce highly effective P fertilizers from those indigenous deposits. Numerous field trials conducted by IFDC in Asia, sub-Saharan Africa, and Latin America have demonstrated that PAPR at 40-50% acidulation with H2SO4 or at 20% with H3PO4 approaches the effectiveness of SSP or TSP in certain tropical soils and crops. This paper discusses how the agronomic effectiveness of PAPR is affected by mineralogical composition and reactivity of PR used and by soil properties and soil reactions. The paper also indicates that if a PR has high Fe2O3 + Al2O3 content, it may not be suitable for PAPR processing because of the reversion of water-soluble P to water-insoluble P during the PAPR manufacturing process. Under these conditions, compaction of PR with water-soluble P fertilizers (e.g. SSP, TSP) at P ratio of approximately 50:50 can be agronomically and economically attractive for utilizing the indigenous PRs in developing countries.  相似文献   

5.
Partially acidulated phosphate rocks (PAPRs) are manufactured by acidulation of PRs with less than the stoichiometric amounts of, usually, phosphoric or sulphuric acids. Products of similar composition to PAPRs are also prepared by cogranulating superphosphate with PRs. For most crops the agronomic value of PAPRs is determined by the availability to plants of their water-soluble P as well as their PR P component. The acid unreacted PR present in the directly acidulated PAPR, is considered to be less reactive than the original PR. This is probably the result of surface coatings of chemical compounds formed during acidulation. Under some soil conditions, in the presence of plants, the PR component probably dissolves faster than the original PR. For seasonal crops, except for fast growing ones such as squash (Cucurbita maxima), reactive PRs partially acidulated so that the final products contain about 50% of its total P in water-soluble form, are generally as effective as fully acidulated superphosphate. For permanent pastures the water P content may be reduced to about 40% of total P without reducing their agronomic effectiveness of the product. In medium P retentive soils pH seems to have little or no influence on the agronomic effectiveness of PAPRs. In highly P retentive soils increasing soil pH reduces the agronomic effectiveness of phosphoric PAPRs apparently by reducing the solubility of the PR component of PAPRs. Even at low pH the dissolution of unreacted PR in sulphuric PAPRs is less than that in phosphoric PAPRs, probably due to the possible coating of calcium sulphate on the residual PR in sulphuric PAPRs. Results on the agronomic effectiveness of PAPRs prepared from unreactive rocks were highly variable and no generalisation could be made regarding the degree of acidulation needed for the products to be consistently effective. Single superphosphate (SSP) cogranulated with reactive rocks (SSP/PR) was agronomically less effective than SSP, and also than phosphoric PAPRs of similar water-soluble P.  相似文献   

6.
A glasshouse study was conducted to determine the influence of soil pH on the agronomic effectiveness of partially phosphoric (Phos-PAPR) and partially sulphuric (SA-PAPR) acidulated phosphate rocks (PR). For Phos-PAPR ground North Carolina PR (NCPR) was acidulated with 10, 30 and 50% of acid needed for complete acidulation. For SA-PAPR a blend of NCPR, Arad and Khouribga PRs were acidulated with 60% of the acid needed. The relative agronomic effectiveness of these PAPRs were compared with superphosphate (SSP) and ground NCPR. A highly phosphate (P) retentive and P deficient pasture soil was used. Prior to addition of fertilizers to soil, the pH of soil was adjusted to 5.1 (initial soil pH) 5.4, 5.7 and 6.1 by applying varying amounts of Ca(OH)2. Ryegrass (Lolium perenne) was grown as the test plant over a period of eight months. Fertilizers were applied at three rates plus control. Soil pH was monitored and continuously adjusted to the desired levels throughout the experimental period.The dry matter yields and P uptake in SSP treated pots were not influenced by soil pH. With increasing soil pH, agronomic performance of Phos-PAPRs and NCPR significantly (P<0.01) decreased but that of SA-PAPR was not affected. On the basis of per unit water-soluble P applied, uptake of P by plants was greater from PAPRs than SSP. Using the P uptake values of SSP and NCPR (which was used to prepare the PAPRs), the dissolution of P from the residual PR component of the PAPRs were calculated. The residual PR component of the Phos-PAPRs apparently dissolved in greater quantities than unacidulated NCPR. Dissolution of the residual PR was enhanced with increasing degree of acidulation. However, in the case of SA-PAPR, the agronomic performance of the PAPR was mostly dependent on the water-soluble P component of the PAPR. The uptake of P from the residual PR component of the SA-PAPR was insignificant.  相似文献   

7.
Twelve granular partially acidulated phosphate rock (PAPR) fertilizers were compared with unacidulated phosphate rocks (PR) and superphosphate at five rates of total P in the presence and absence of supplementary sulfate and plant residue recycling treatments in a long-term green-house experiment with lucerne (Medicago sativa L., cv. CUF101). The PAPRs were prepared from two PRs (Christmas Is. A grade and Duchess, Queensland) and acidulated at two rates (25% and 50% on an H2SO4 to single superphosphate basis) with either H2SO4 or H3PO4. Six harvests (each bulked from three cuttings) were collected over a 2-year period. It was generally found that lucerne response to PAPRs depended closely on their water-soluble plus citrate-soluble P contents which increased with increased degree of acidulation. The H3PO4 tended to yield more soluble P on acidulation of PR than H2SO4 and acidulation of Christmas Is. PR yielded more soluble P than did acidulation of Duchess PR. There was little evidence for enhanced availability of P due to action of the triple point solution in hydrolyzing granules on residual PR in those granules.  相似文献   

8.
PAPR was made by partial acidulation of North Carolina phosphate rock with H3PO4. The PAPRs were incubated in bands in columns of two soils of contrasting P retention. The columns were sampled after freezing and sectioning with a cryomicrotome. The movement of P in soil incubated with33P-labelled PAPR was followed by autoradiography of polished epoxy impregnated sections of the freeze-dried soil column. PAPR solubility was also studied by a sequential dialysis process using distilled deionised water. The acid solution resulting from the dissolution of monocalcium phosphate (MCP) in PAPR moved into the surrounding soil, solubilizing soil minerals and creating a low-pH front with a high concentration of P. Depending on the soil, phosphorus moved 6–14 mm away from the fertilizer/soil interface by mass flow and diffusion in two days. The increase in 0.5 M NaOH extractable P above that of untreated soil showed a maximum at the same position as the pH minimum in the soil. In both soils, the total P movement from the fertilizer band after a two day period for 50% PAPR was comparable to that for 100% acidulation (triple superphosphate), indicating that acidulations above 50% did not necessarily increase the movement of soluble P from the fertilizer pellet. Variations in pH in the fertilizer-affected soil could be explained by the net balance of acidity resulting from incoming acid P solution and release of OH during P sorption. The rock residue exhibited a transient loss in solubility which was reversed on subsequent dissolution, suggesting a possible surface alteration.  相似文献   

9.
The agronomic effectiveness (yield and P uptake) of twelve granular, partially acidulated phosphate rock fertilizers (PAPR) and two finely ground, unacidulated phosphate rocks (PR) were compared to that of a single superphosphate in a long-term greenhouse experiment with lucerne (Medicago sativa L., cv. CUF101), grown in a low P sorbing, moderately acid, sandy loam soil of moderate P status (Paleustaf). The PAPRs were prepared from two unreactive PRs (Christmas Is. A grade and Duchess rock from Queensland) and acidulated at two rates (25% and 50% on a H2SO4 to single superphosphate basis) with either H2SO4 or H3PO4. Additional products included H2SO4 PAPRs cogranulated with elemental S (10% w/w).Superphosphate was consistently superior to all PRs and PAPRs in agronomic effectiveness throughout this two-year study. The most effective of the PAPRs were those that were 50% acidulated with H2SO4 and cogranulated with elemental S; this type of fertilizer from both rocks was approximately 2/3 as effective as superphosphate when relative agronomic effectiveness indices (RAE) were calculated from cumulative yields. The increase in agronomic effectiveness relative to superphosphate (RAE value) by the partial acidulation of the PR could be attributed to its effect of increasing the P solubility in the PAPR. A curvilinear relationship existed between the RAE values of PRs and PAPRs, measured from cumulative yield or P uptake data, and the percentage of the total P in each fertilizer that was in a soluble (water + citrate soluble) form. Cogranulation with elemental S (10% w/w) significantly displaced this relationship upwards by increasing the RAE of H2SO4 PAPRs by more than 50%. The maximum cumulative recovery of applied P by lucerne tops after five bulked harvests (fifteen consecutive harvests) was 61.5%, which occurred at the low application rate of superphosphate. The decline in the substitution value of PRs for superphosphate, that occurred with increasing P rates tended to be offset both by increasing the level of acidulation and by cogranulating the PAPR with elemental S.  相似文献   

10.
Phosphorus inputs are required in highly weathered tropical soils for sustainable crop production. However, high cost and limited access to mineral P fertilizers limit their use by resource-poor farmers in West Africa. Direct application of finely ground phosphate rock (PR) is a promising alternative but low solubility of PR hampers its use. Co-application of PR with manure could be a low cost means of improving the solubility of natural PR and improve their agronomic effectiveness. Our objective was to quantitatively estimate the enhancement effect of poultry manure on P availability from low reactive PR (Togo phosphate rock) applied to highly weathered soils. We utilized two highly weathered soils from Ghana and Brazil for this greenhouse study. Using 32P isotopic tracers, the agronomic effectiveness of poultry-manure-amended Togo rock phosphate (TPR) was compared with partially acidulated Togo rock phosphate (PAPR) and triple superphosphate (TSP). Four rates of poultry manure: 0, low (30 mg P kg−1 soil), high (60 mg P kg−1 soil) and very high (120 mg P kg−1 soil) were, respectively, added to a constant amendment (60 mg P kg−1 soil) of the P sources and applied to each pot of 4 kg soil. A Randomized Complete Block Design was used for the greenhouse experiment and Maize (Zea mays L.) was used as a test crop. The plants were grown for 42 days after which the above ground biomass was harvested for analysis. Without poultry manure addition, the agronomic effectiveness, represented by the relative agronomic effectiveness (RAE) and proportion of P derived from fertilizer (% Pdff) was in the order TSP > PAPR > TPR = control (P0). In the presence of low rate poultry manure addition, the agronomic effectiveness followed the order TSP > PAPR = PR > P0. However, at the high and very high rates of poultry manure addition, no significant differences in agronomic effectiveness were observed among the P sources, suggesting that at this rate of poultry manure addition, PR was equally as effective as TSP. The study showed that direct application of PR co-applied with poultry manure at a 1:1 P ratio will be a viable option for P replenishment. Thus a combination of PR and poultry manure could be a cost-effective means of ensuring sustainable agricultural production in P-deficient, highly weathered tropical soils.  相似文献   

11.
Partially acidulated phosphate fertilizers are manufactured either by direct partial acidulation of phosphate rocks (PRs) with sulphuric and/or phosphoric acid (directly acidulated PAPR) or indirectly by mixing reactive phosphate rocks (RPRs) with single superphosphate (SSP-RPR mixture). This form of low cost fertilizer manufacture is suitable for improving the agronomic value of unreactive PRs or production of high analysis fertilizers that can have agronomic values similar to fully acidulated phosphate fertilizers.The solubility characteristics of the directly acidulated PAPRs are affected by the type, composition and concentration of the acid used for acidulation, degree of acidulation, nature and fineness of PR and the method of manufacture. In general, partial acidulation with phosphoric acids which contain minimum amounts of metallic impurities acidulates more PR and results in more soluble P in the product. In the case of SSP-RPR mixtures made by adding RPR to immature SSP, the nature of PR used for SSP manufacture and the time of addition of RPR to ex-den SSP mixture affects the quality of the product. In order to minimize the selective reaction of the RPR with residual acid present in the ex-den SSP reaction mixture, RPR should not be added until PR acidulation (used for SSP) is essentially complete.The agronomic value of partially acidulated phosphate fertilizers is affected by the amount of water soluble P and the solubility of residual PR. None of the single extraction tests such as 2% citric acid, 2% formic acid and neutral ammonium citrate appear to be appropriate as indicators of plant available P in these fertilizers. Double extraction procedures which remove both the soluble P and the residual P have been investigated, but need to be correlated with agronomic data before they can be adopted as quality tests.  相似文献   

12.
A greenhouse study was conducted with two surface, acidic soils (a Hiwassee loam and a Marvyn loamy sand) to measure the effect of increasing P-fixation capacity, on the relative agronomic effectiveness (RAE) of phosphate fertilizers derived from Sukulu Hills phosphate rock (PR) from Uganda. Prior to fertilizer application, Fe-gel was added to increase P-fixation capacity from 4.4 to 14.3% for the Marvyn soil and from 37.0 to 61.5% for the Hiwassee soil. Phosphate materials included compacted Sukulu Hills concentrate PR + Triple superphosphate (CTSP) at a total P ratio of PR:TSP = 50:50; 50% partially acidulated PR (CPAPR) from Sukulu Hills concentrate PR made with H2SO4; and Sukulu Hills concentrate PR (PRC) made by magnetically removing iron oxide from raw PR ore. Triple superphosphate (TSP) was used as a reference fertilizer. After adjusting soil pH to approximately 6, P sources were applied at rates of 0, 50, 150, and 300 mg total P kg–1 soil. Two successive crops of 5 week old corn seedlings (Zea mays L.) were grown. The results show that the RAE of the phosphate materials measured using dry-matter yield or P uptake generally decreased as P-fixation capacity was increased for both soils. CTSP was more effective in increasing dry-matter yield and P uptake than CPAPR. PRC alone was an ineffective P source. Soil chemical analysis showed that Bray 1 and Mehlich 1 extractants were ineffective on the high P-fixation capacity Fe-gel amended Hiwassee soil. Mehlich 1 was unsuitable for soils treated with PRC since it apparently solubilizes unreactive PR. When all of the soils and P sources were considered together, Pi paper was the most reliable test for estimating plant available P.  相似文献   

13.
Khouribga phosphate rock was partially acidulated with 50 and 70% of the required H2SO4 for complete acidulation. The unreacted rock residue was isolated by subsequent extractions with water and alkaline ammonium citrate solution. P solubility in 2% formic acid of this residues was reduced as compared to the original Khouribga phosphate rock. This loss in reactivity consistently increased with the degree of acidulation. Plant response to fertilizer application emphasized the negative effect of partial acidulation in an acid soil. Mixtures of superphosphate and phosphate rock were more effective than partially acidulated phosphate rock.Applications of apatitic P did not affect P efficiency on a neutral soil. Differences between mixed and partially acidulated phosphate rock could therefore not be observed. The effectiveness of the products was due to their content of acidulated P.Hydrolysis of monocalciumphosphate caused a further acidulation of the residual apatite in moist incubated granules. The extent of these reactions, however, was too low to improve P efficiency significantly.  相似文献   

14.
Phosphorus (P) is needed in large areas of developing countries toimprove soil fertility for crop production. The use of phosphate rock (PR) isan alternative to costly soluble P fertilizers, but it is ineffective usuallyin non-acid soils unless it is modified i.e. partially acidulated (PAPR). Alaboratory incubation study using the isotopic exchange kinetic method of32P and field experiments were undertaken on a neutral Ferralsol ofCuba to evaluate the effectiveness of PAPRs as fertilizers for common bean(Phaseolus vulgaris, L.). Sulfuric-acid based PAPR using40%, 50% and 60% of the acid required to produce singlesuperphosphate were studied. In the laboratory experiment Trinidad de GuedesPAPR was effective in providing P to the soil, through increases inisotopicallyexchangeable P and the percentage of P derived from fertilizer (%Pdff). In the three field experiments carried out to compare the P sources,yields of common bean were increased by PAPR, though the response was less thanwith triple superphosphate (TSP). The relative agronomic effectiveness (RAE) ofPAPR was greater than that of unacidulated PR. Taking into account the RAEvalues and the current cost of the P sources, the choice of Trinidad de GuedesPAPR instead of TSP could be economic, although the RAE value for PAPR waslowerthan that of TSP. This result indicates that PAPR could be used in thesoil understudy to obtain the best economic return. DM yield, P uptake and grain yield ofcommon bean were significantly increased by applying P as 50% PAPR. Lowcost improvement of the agronomic value of PR can be achieved by partialacidulation, so this modification of the phosphate rock show promise forutilization of PR reserves indigenous to developing countries.  相似文献   

15.
Five phosphate rocks varying in formic acid P solubility from 18.9 to 52.7%, expressed as percentage of total P, were acidulated with phosphoric or sulphuric acids to 0, 20%, 33% and 50% of full acidulation and granulated. In an incubation experiment fertilizer granules of diameter 1–2 mm were mixed with two acid soils and after 1 week incubation soil samples were extracted with a 0.5 M NaOH solution. In a dissipation experiment single fertilizer granules of 4 mm diameter were implanted into soil, incubated for 1 and 4 weeks and inorganic P fractionation in the residual granules and the surrounding soil was performed. Dissipated P was greater than the water soluble P content of the partly acidulated phosphate rock fertilizers indicating the dissolution of the non-acidulated phosphate rocks. The amount of P dissipated was related to the initial water soluble P content and to the formic acid solubility of phosphate rocks used for manufacturing the fertilizers. The P dissipated increased with an increase in soil acidity.  相似文献   

16.
Ground samples of Nauru (N), Christmas Island A (X), Jordan (J) or North Carolina (NC) phosphate rocks (PRs) were acidulated with32P spiked sulphuric acid to produce single superphosphate (SSP) reaction mixtures. Subsequently, single superphosphatereactive phosphate rock (SSP-RPR) mixtures were manufactured by adding reactive phosphate rock (RPR) as either ground or unground NCPR or ground JPR to SSP reaction mixtures that had been denned for either 22 or 47 minutes after acid addition. The solubility of P in the final SSP-RPR products was assessed either by extraction with water, 2% citric acid, 2% formic acid or 1M neutral ammonium citrate (NAC), or by calculation of the exchangeable P content of the fertilizer by isotopic dilution techniques. The measurement of exchangeable P allowed calculation of the amounts of acidulated P in the ex-den SSP and the amount of RPR P acidulated on addition to ex-den SSP containing free phosphoric acid.Among the PRs used for SSP manufacture, the highest degree of acidulation at the ex-den stage was obtained for NCPR (92%) and the lowest was obtained for XPR (75%). As a consequence, the presence of XPR in the SSP reaction mixture decreased the amount of exchangeable P in the SSP-RPR mixtures. Whereas initially the conversion of PR P increased with time of acidulation at 22 minutes and 47 minutes (i.e. the time of addition of RPR) the differences in the degree of acidulation of PR in the ex-den SSP were not large and hence had no significant effect on the extractability of P in the SSP-RPR mixtures.The nature of the RPR added to the ex-den SSP reaction mixture had a significant effect on the solubility of P in the SSP-RPR mixtures. SSP-RPR mixtures with added unground NCPR or ground JPR had lower P solubility than when ground NCPR was added. RPR P constituted between 38 and 46% of the total P in the SSP-RPR mixtures and at acid/PR (A/R) ratios of 0.60 to 0.70, between 28 to 49% of the RPR P was acidulated by the free acid in the SSP reaction mixture during manufacture.The results also indicate that RPR mixtures made using ex-den SSP made from unreactive PRs will always contain more unreactive PR residue than those made with mature SSP. However, given the practical difficulties of producing the SSP-RPR mixtures with mature SSP, denning times should be extended for as long as practicably possible.  相似文献   

17.
The agronomic potential of four partially acidulated rock phosphates (PARP) made from a moderate reactive phosphate rock at 30 or 60 percent acidulation either by sulfuric acid alone or by combination of sulfuric and phosphoric acids was compared with that of monocalcium phosphate (MCP) and ground rock phosphate (RP) on a calcareous soil (Typic Hapluquent, pH 8.5) in greenhouse. Dry weight and P accumulation of successive cuttings of ryegrass shoots were used to evaluate the relative agronomic potential of these fertilizers. Results indicated that PARPs of higher water-soluble P content had similar immediate effectiveness as MCP at two earlier cuttings, however, they produced significantly less total dry matter than MCP did in overall six successive cuttings. PARPs were constantly inferior to MCP in terms of P uptake by plant in all the six cuttings. When compared to RP, on the other hand, PARPs had markedly higher relative effectiveness. RP itself affected neither the dry matter production nor the P uptake by plant as compared to control treatment.Fractionation of residual inorganic P in the soil samples at two time intervals during plant growth indicated that MCP-P mainly transformed to dicalcium phosphate and octacalcium phosphate, and to a less extent to Fe and Al associated P. These forms of P had significant correlation with P accumulation by plant. Raw RP did not subject to transformation after applied to the soil regardless the duration of culture time. No obvious dissolution of unreacted RP in PARP materials was detected. Plant dry matter production and P uptake were mainly correlated with water-soluble P added with the fertilizers. It is suggested from the experiment that although partial acidulation could substantially improved the effectiveness of rock phosphate and the immediate effect of the fertilizer was competitive with MCP, application of PARP to calcareous soils is only of short-term benefits; in a long run this fertilizer is not considered as a desirable source of P in calcareous soils since the unacidulated part in the fertilizer was unable to be solubilized in the alkaline conditions.  相似文献   

18.
The initial and residual fertilizer effectiveness of North Carolina RP (rock phosphate), monocalcium phosphate and partially acidulated RP (made from North Carolina RP at 30% acidulation), both granulated and non-granulated, were measured in a glasshouse experiment. Triticale (xTriticosecale) was grown for 30 days on a soil that had been adjusted to three pH values (4.2, 5.2 and 6.2). Two crops were grown with a six month interval between crops. The effectiveness of the different fertilizers was compared using relationships between (1) yield of dried tops and the amount of P applied and (2) P content (P concentration in tissue multiplied by yield) and the amount of P applied. For the first crop, relative effectiveness (RE) of the fertilizers was calculated relative to granulated monocalcium phosphate, the most effective fertilizer. Monocalcium phosphate was not applied to the second crop, so relative residual effectiveness (RRE) was estimated for each fertilizer relative to the residual effectiveness of granulated monocalcium phosphate.The relative effectiveness of granulated monocalcium phosphate (band application) was greater (RE = 1.00) than of North Carolina RP (0.01–0.02) and partially acidulated RP (0.45–0.76) for all three soil pH values for the first crop. Granulation and band application increased the effectiveness of monocalcium phosphate and partially acidulated RP, but reduced the effectiveness of North Carolina RP. Both non-granulated monocalcium phosphate and partially acidulated RP were less effective than granulated partially acidulated RP for both crops. For the second crop granulated monocalcium phosphate was most effective and the RRE of non-granulated partially acidulated RP (0.16–0.32) and North Carolina RP (0.19–0.28) was greater than for non-granulated monocalcium phosphate (0.12). For the more acidic soil the RE of non-granulated North Carolina RP was four times higher than for the high pH soil for the first crop and 60% higher for the second crop, but it was still poorly effective relative to granulated monocalcium phosphate. Granulated North Carolina RP was least effective among all the fertilizers for all soil pH values and for both crops.  相似文献   

19.
Soil Samples were collected from a field experiment conducted to evaluate the agronomic effectiveness of a reactive phosphate rock (PR), Sechura sand, relative to that of monocalcium phosphate (MCP) at different soil pHs and rates of application. The samples were analysed for P soluble in the soil solution and bicarbonate extractable P. The rate of dissolution of PR was calculated from the data on the fractionation of inorganic P. In MCP plots P in the soil solution decreased sharply with time especially at low pHs and high rates of fertiliser application. In PR plots the concentration remained with time at the same as or a slightly higher level than that was found one month after application. Solution concentration of P was lower at very high rates of PR application than at intermediate rates. In both MCP and PR plots bicarbonate extractable P decreased with increasing pH. Bicarbonate extractable P was linearly related to MCP but not to PR applied. The rate of dissolution and the proportion of PR dissolved decreased with increasing rates of PR application but the amount dissolved increased. Phosphate dissolved at high level of PR application did not seem to enhance proportionately either the concentration of P in soil solution or bicarbonate extractable P.  相似文献   

20.
The agronomic effectiveness of a partially acidulated phosphate rock (PAPR) was measured in a field experiment with sorghum (Sorghum bicolor cv. CSH-6) in a shallow Alfisol at the ICRISAT farm, Patancheru (Hyderabad), India. The experiment compared PAPR with single superphosphate. The PAPR was made by acidulating an indigenous Indian phosphate rock (Mussoorie) with H2SO4 at 50% acidulation level. P response was evaluated at a single relatively high N rate (120 kg ha–1) with five rates of P (0, 2.2, 4.4, 8.8, and 17.6 kg P ha–1). A significant response to P was obtained at rates up to 17.6kg P ha–1.There was no significant difference due to source of P in terms of sorghum grain yield or total P uptake. Both Olsen and Bray 1 soil tests underestimated P availability from PAPR with respect to that from SSP.A rapid rate of P uptake was observed during grain filling to maturity (81–102 days), when 40% of the total P was taken by the plant. The internal efficiency of both P sources was the same.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号