首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
1. This study was undertaken to determine whether the AT1 receptor directly contributes to hypertension-induced cardiac hypertrophy and gene expressions. 2. Stroke-prone spontaneously hypertensive rats (SHRSP) were given orally an AT1, receptor antagonist (losartan, 30 mg kg-1 day-1), an angiotensin converting enzyme inhibitor (enalapril 10 mg kg-1 day-1), a dihydropyridine calcium channel antagonist (amlodipine, 5 mg kg-1 day-1), or vehicle (control), for 8 weeks (from 16 to 24 weeks of age). The effects of each drug were compared on ventricular weight and mRNA levels for myocardial phenotype- and fibrosis-related genes. 3. Left ventricular hypertrophy of SHRSP was accompanied by the increase in mRNA levels for two foetal phenotypes of contractile proteins (skeletal alpha-actin and beta-myosin heavy chain (beta-MHC)), atrial natriuretic polypeptide (ANP), transforming growth factor-beta-1 (TGF-beta 1) and collagen, and a decrease in mRNA levels for an adult phenotype of contractile protein (alpha-MHC). Thus, the left ventricle of SHRSP was characterized by myocardial transition from an adult to a foetal phenotype and interstitial fibrosis at the molecular level. 4. Although losartan, enalapril and amlodipine lowered blood pressure of SHRSP to a comparable degree throughout the treatment, losartan caused regression of left ventricular hypertrophy of SHRSP to a greater extent than amlodipine (P < 0.01). 5. Losartan significantly decreased mRNA levels for skeletal alpha-actin, ANP, TGF-beta 1 and collagen types I, III and IV and increased alpha-MHC mRNA in the left ventricle of SHRSP. Amlodipine did not alter left ventricular ANP, alpha-MHC and collagen types I and IV mRNA levels of SHRSP. 6. The effects of enalapril on left ventricular hypertrophy and gene expressions of SHRSP were similar to those of losartan, except for the lack of inhibition of collagen type I expression by enalapril. 7. Unlike the hypertrophied left ventricle, there was no significant difference between losartan and amlodipine in the effects on non-hypertrophied right ventricular gene expressions of SHRSP. 8. Our results show that hypertension causes not only left ventricular hypertrophy but also molecular transition of myocardium to a foetal phenotype and interstitial fibrosis-related molecular changes. These hypertension-induced left ventricular molecular changes may be at least in part mediated by the direct action of local angiotensin II via the AT1, receptor.  相似文献   

2.
BACKGROUND: In hypertension with cardiac hypertrophy, the specific contributions to increased production of the cardiac natriuretic peptides (NP) atrial natriuretic factor (ANF) and brain natriuretic peptide (BNP) by load and the hypertrophic process are not known. In the present work we determine ANF and BNP synthesis and secretion in the aortic-banded rat treated with dosage schedules of the ACE inhibitor ramipril that result in the prevention or regression of both hypertension and hypertrophy (high dosage) or in the prevention or regression of hypertrophy alone with persistent hypertension (low dosage). Myosin heavy chain (MHC) isoform switch was studied as an indicator of ventricular cardiocyte hypertrophy as well as the levels of collagen III mRNA as a measure of changes in extracellular matrix. METHODS AND RESULTS: Ramipril was administered for 6 weeks just after suprarenal aortic banding, or rats were banded for 6 weeks, after which ramipril was administered during the following 6 weeks. Banding caused an increase in blood pressure, left ventricular weight-to-body weight ratio, plasma and ventricular NP, ventricular NP mRNA, collagen III, and beta-MHC mRNA. Ramipril at 1 mg/kg normalized all these parameters while ramipril at 10 micrograms/kg normalized left ventricular weight-to-body weight ratio but not blood pressure. Plasma and ventricular NP content and mRNA levels were partially normalized by ramipril (10 micrograms/kg). Ramipril (10 micrograms/kg) prevented increased collagen III mRNA levels but did not affect beta-MHC mRNA levels. CONCLUSIONS: (1) NP production and secretion in aortic-banded rats are independently related to increased blood pressure and hypertrophy. (2) A load-dependent component is more important than a load-independent component in regulating left ventricular NP production. (3) ANF production is more sensitive than BNP production to the load-independent component. (4) Low-dose ramipril treatment reverses hypertrophy and the increased collagen III expression but does not reverse the increased beta-MHC isoform expression, suggesting that these are independently regulated processes. (5) Aortic banding and ACE inhibition do not affect atrial NP production and content.  相似文献   

3.
Using quantitative RT-PCR in RNA from right ventricular (RV) endomyocardial biopsies from intact nonfailing hearts, and subjects with moderate RV failure from primary pulmonary hypertension (PPH) or idiopathic dilated cardiomyopathy (IDC), we measured expression of genes involved in regulation of contractility or hypertrophy. Gene expression was also assessed in LV (left ventricular) and RV free wall and RV endomyocardium of hearts from end-stage IDC subjects undergoing heart transplantation or from nonfailing donors. In intact failing hearts, downregulation of beta1-receptor mRNA and protein, upregulation of atrial natriuretic peptide mRNA expression, and increased myocyte diameter indicated similar degrees of failure and hypertrophy in the IDC and PPH phenotypes. The only molecular phenotypic difference between PPH and IDC RVs was upregulation of beta2-receptor gene expression in PPH but not IDC. The major new findings were that (a) both nonfailing intact and explanted human ventricular myocardium expressed substantial amounts of alpha-myosin heavy chain mRNA (alpha-MHC, 23-34% of total), and (b) in heart failure alpha-MHC was downregulated (by 67-84%) and beta-MHC gene expression was upregulated. We conclude that at the mRNA level nonfailing human heart expresses substantial alpha-MHC. In myocardial failure this alteration in gene expression of MHC isoforms, if translated into protein expression, would decrease myosin ATPase enzyme velocity and slow speed of contraction.  相似文献   

4.
Angiotensin II mediates its effects through activation of specific angiotensin (AT) receptors which can be regulated during cardiovascular disease. This study has investigated whether an increased cardiac and renal AT receptor density is important in the development of left ventricular and renal hypertrophy in three rat models of hypertension [spontaneous hypertensive (SHR), deoxycorticosterone acetate (DOCA)-salt and 2K1C renal hypertensive rats]. Although all hypertensive rats developed left ventricular and renal hypertrophy, AT receptor density increased only in the left ventricle and kidney of SHR during the development of hypertension. Thus, cardiac and renal hypertrophy per se do not increase AT receptor density. AT receptors were increased in the liver of DOCA-salt rats, 2K1C rats and 52-week-old SHR and in adrenal glands of DOCA-salt rats and SHR. A plausible explanation for tissue-dependent AT receptor regulation involves tissue-selective control of local renin-angiotensin systems independent of circulating hormone levels, combined with disease-induced cell damage.  相似文献   

5.
6.
The purpose of this study was to examine the cardiac phenotype and remodeling after myocardial infarction and the effect of the angiotensin II type 1 (AT1) receptor antagonist (TCV-116) on the gene expression. Myocardial infarction in rats was produced by ligation of the coronary artery. TCV-116 (10 mg/kg/day) was administered orally to rats from 1 day after myocardial infarction. At 1, 2 and 3 weeks after myocardial infarction, blood pressure and heart rate were measured, and the heart was removed. The left ventricle was measured for infarct size and weight, and then the total RNA from the non-ischemic left ventricle was extracted. mRNAs in the non-ischemic left ventricle were measured by Northern blot analysis. The weight of the non-ischemic left ventricle was significantly increased 3 weeks after infarction. This was completely prevented by TCV-116 treatment. mRNA levels for beta-myosin heavy chain (beta-MHC), atrial natriuretic polypeptide (ANP), collagen types I and III and transforming growth factor-beta 1 (TGF-beta 1) in the non-ischemic left ventricle were increased by a factor of 3.0, 6.7, 7.9, 4.0 and 1.4 (P < 0.01), respectively, 1 week after infarction. There was no increase in alpha-skeletal actin mRNA at 1 and 2 weeks, but it was increased by a factor of 2.9 (P < 0.05) at 3 weeks. On the other hand, there was no change in alpha-MHC mRNA during the 3 weeks. TCV-116 significantly suppressed the increased gene expression of beta-MHC and alpha-skeletal actin in the non-ischemic myocardium at all time points, and also suppressed the expression of ANP at 2 and 3 weeks. However, TCV-116 failed to inhibit the expression of collagen I and III mRNAs at 1 and 3 weeks. These results show that myocardial infarction causes a rapid shift of myocytes to fetal phenotype and a rapid activation of collagen genes in the non-ischemic myocardium. AT1 receptor may be responsible for the phenotypic modulation of myocytes following myocardial infarction.  相似文献   

7.
Left ventricular hypertrophy with adequate wall thickness, preserved adult phenotype and extracellular matrix may be useful in the prevention of heart failure. Because activation of subtype 1 of angiotensin II (AT1) receptors is thought to be involved in the hypertrophic response of cardiomyocytes, we tested the potential of systemic AT1 blockade to modify the development of left ventricular hypertrophy due to pressure overload. Sham-operated rats and rats with ascending aorta constriction were treated with losartan (30 mg/kg/day) for 8 weeks. Left ventricular geometry, dynamics of isovolumic contractions, hydroxyproline concentration as well as myosin isozymes (marker of fetal phenotype) were assessed. Rats with aortic constriction exhibited a marked increase in left ventricular weight and the diastolic pressure-volume relationship was shifted to smaller volumes. An enlarged ventricular pressure-volume area and increased (p < 0.05) peak values of +dP/dtmax and- dP/dtmax demonstrated an enhanced overall ventricular performance. Signs of congestive heart failure were not apparent. In contrast, parameters of myocardial function (normalized length-stress area, +d delta /dtmax and -d delta /dtmax) were depressed (p < 0.05), indicating an impaired myocardial contractility. The hydroxyproline concentration remained unaltered. However, the proportion of beta-myosin heavy chains (MHC) was increased (p < 0.05). Administration of losartan decreased (p < 0.05) blood pressure and body weight in sham operated and pressure overloaded rats. By contrast, neither the concentric left ventricular hypertrophy or depressed myocardial function nor the increased beta-MHC expression were significantly altered. Thus, activation of AT1 receptors appears not to be involved in the initial expression of the fetal phenotype of pressure overloaded heart which may be responsible for the progressive functional deterioration of the hypertrophied ventricle.  相似文献   

8.
9.
The levels of adrenomedullin (ADM), a newly discovered vasodilating and natriuretic peptide, are elevated in plasma and ventricular myocardium in human congestive heart failure suggesting that cardiac synthesis may contribute to the plasma concentrations of ADM. To examine the time course of induction and mechanisms regulating cardiac ADM gene expression, we determined the effect of acute and short-term cardiac overload on ventricular ADM mRNA and immunoreactive ADM (ir-ADM) levels in conscious rats. Acute pressure overload was produced by infusion of arginine8-vasopressin (AVP, 0.05 microg/kg/min, i.v.) for 2 h into 12-week-old hypertensive TGR(mREN-2)27 rats and normotensive Sprague-Dawley (SD) rats. Hypertension and marked left ventricular hypertrophy were associated with 2.2-times higher ir-ADM levels in the left ventricular epicardial layer (178 +/- 36 vs. 81 +/- 23 fmol/g, P<0.05) and 2.6-times higher ir-ADM levels in the left ventricular endocardial layer (213 +/- 23 vs. 83 +/- 22 fmol/g, P<0.01). The infusion of AVP for 2 h in normotensive rats produced rapid increases in the levels of left ventricular ADM mRNA (epicardial layer: 1.6-fold, P<0.05) and ir-ADM (endocardial layer: from 83 +/- 22 to 140 +/- 12 fmol/g, P<0.05), whereas ventricular ADM mRNA and ir-ADM levels did not change significantly in hypertensive rats. Short-term cardiac overload, induced by administration of angiotensin II (33.3 microg/kg/h, s.c., osmotic minipumps) for two weeks in normotensive SD rats resulted in left ventricular hypertrophy (3.05 +/- 0.17 vs. 2.75 +/- 0.3 mg/g, P<0.05) and a 1.5-fold increase (P<0.05) in ventricular ADM mRNA levels. In conclusion, the present results show that pressure overload acutely stimulated ventricular ADM gene expression in conscious normotensive rats suggesting a potential beneficial role for endogenous ADM production in the heart against cardiac overload. Since pressure overload-induced increase in ADM synthesis was attenuated in hypertensive rats, alterations in the ADM system may contribute to the pathogenesis of hypertension in the TGR(mREN-2)27 rat.  相似文献   

10.
The spontaneously hypertensive rat (SHR) exhibits a transition from stable compensated left ventricular (LV) hypertrophy to heart failure (HF) at a mean age of 21 months that is characterized by a decrease in alpha-myosin heavy chain (alpha-MHC) gene expression and increases in the expression of the atrial natriuretic factor (ANF), pro-alpha1(III) collagen, and transforming growth factor beta1 (TGF-beta1) genes. We tested the hypotheses that angiotensin-converting enzyme inhibition (ACEI) in SHR would prevent and reverse HF-associated changes in gene expression when administered prior to and after the onset of HF, respectively. We also investigated the effect of ACEI on circulating and cardiac components of the renin-angiotensin system. ACEI (captopril 2 g/L in the drinking water) was initiated at 12, 18, and 21 months of age in SHR without HF and in SHR with HF. Results were compared with those of age-matched normotensive Wistar-Kyoto (WKY) rats, and to untreated SHR with and without evidence of HF. ACEI initiated prior to failure prevented the changes in alpha-MHC, ANF, pro-alpha1(III) collagen, and TGF-beta1 gene expression that are associated with the transition to HF. ACEI initiated after the onset of HF lowered levels of TGF-beta1 mRNA by 50% (P<.05) and elevated levels of alpha-MHC mRNA two- to threefold (P<.05). Circulating levels of renin and angiotensin I were elevated four- to sixfold by ACEI, but surprisingly, plasma levels of angiotensin II were not reduced. ACEI increased LV renin mRNA levels in WKY and SHR by two- to threefold but did not influence LV levels of angiotensinogen mRNA. The results suggest that the anti-HF benefits of ACEI in SHR may be mediated, at least in part, by effects on the expression of specific genes, including those encoding alpha-MHC, ANF, TGF-beta1, pro-alpha1(III) collagen, and renin-angiotensin system components.  相似文献   

11.
BACKGROUND: The detrimental effects of high dietary salt intake may not only involve effects on blood pressure and organ hypertrophy but also lead to tissue fibrosis independently of these factors. METHODS AND RESULTS: The effect of a normal (1%) or high (8%) sodium chloride diet on myocardial and renal fibrosis was assessed by quantitative histomorphometry in spontaneously hypertensive rats (SHRs) and normotensive Wistar-Kyoto rats (WKYs). The effect of salt on transforming growth factor-beta1 (TGF-beta1) gene expression was assessed by Northern blot hybridization. A high-salt diet from 8 to 16 weeks of age resulted in increased blood pressure and left ventricular and renal hypertrophy in both WKYs and SHRs. Marked interstitial fibrosis was demonstrated in the left ventricle (LV), glomeruli, and renal tubules and in intramyocardial arteries and arterioles but not in the right ventricle. The collagen volume fraction increased significantly after high-salt diet in the LV, intramyocardial arteries and arterioles, glomeruli, and peritubular areas in both WKYs and SHRs. In the kidneys, glomerular and peritubular type IV collagen was also increased. There was overexpression of TGF-beta1 mRNA in the LV and kidneys in both rat strains after a high-salt diet (all P<0.001). CONCLUSIONS: High dietary salt led to widespread fibrosis and increased TGF-beta1 in the heart and kidney in normotensive and hypertensive rats. These results suggest a specific effect of dietary salt on fibrosis, possibly via TGF-beta1-dependent pathways, and further suggest that excessive salt intake may be an important direct pathogenic factor for cardiovascular disease.  相似文献   

12.
1. Hypertensive cardiac hypertrophy is a major independent predictor of adverse cardiovascular events. In man the cardiac response to increased afterload is very variable, even when ambulatory blood pressure monitoring is used. Analysis of breeding experiments using normotensive and hypertensive rat strains, human twin studies and other data indicate that genetic factors play a significant role in regulating cardiac mass; in other words, a large component of total variability is accounted for by genetic variance. 2. The observation that some patients with only mild-to-moderate hypertension exhibit gross left ventricular hypertrophy (LVH) similar to the inherited hypertrophic cardiomyopathies such as familial hypertrophic cardiomyopathy (FHC) and Friedreich's ataxia (FA) has prompted us to investigate the hypothesis that genetic factors associated with excessive myocardial hypertrophy, viz. mutations in FHC and FA genes alter the hypertrophic response of the heart to pressure overload. Here we review briefly three lines of study: (i) association analysis to test whether the allele frequencies differ in hypertensive patients with or without left ventricular hypertrophy; (ii) characterization of the cardiac manifestations of FA to understand the mechanism by which the heart is affected in a disease associated with pathology in a subgroup of neurons, and (iii) creation of transgenic models to facilitate the investigation of the interaction between hypertrophic stimuli and underlying genetic predisposition. 3. Information on the nature of the cardiac-mass-modifying genes involved may be useful not only for selecting high risk patients in strategies aimed at preventing the development of LVH, but also in opening new avenues of research on the reprogramming of cardiac myocytes to encourage them to hypertrophy in situations where cardiac muscle has been damaged or is hypoplastic.  相似文献   

13.
Recent studies have pointed out the differential role of angiotensin II (Ang II) receptor subtypes, AT1 and AT2, in cardiac hypertrophy and fibrosis during pathological cardiac growth. Because senescence is characterized by an important cardiovascular remodeling, we examined the age-related expression of cardiac Ang II receptors in rats. AT1 and AT2 receptor subtype messenger RNA (mRNA) levels were quantitated by RT-PCR. In parallel, specific Ang II densities were determined in competition binding experiments using specific antagonists. AT1a and AT1b mRNA levels were markedly up-regulated (5.6-fold) in the left ventricle of 24-month-old rats compared with 3-month-old rats, but not in the right ventricle. In contrast, AT2 gene expression was increased in both ventricles of senescent rats (4.2- and 2.8-fold in the left and right ventricles, respectively). Similarly, AT1 and AT2 gene expression was increased 2.3- and 2-fold, respectively, in freshly isolated cardiomyocytes from aged rats. Furthermore, AT1 and AT2 specific binding was increased in the aged left ventricular myocardium. Even though the mechanistic pathway of this up-regulation of Ang II receptor subtype gene expression might be intrinsic to developmental gene reprogramming, the up-regulation of AT1 mRNA accumulation in the left ventricle during aging could also be secondary to age-related hemodynamic changes, whereas increased AT2 gene expression in both ventricles may depend upon hormonal and humoral factors.  相似文献   

14.
The expression of the alpha-myosin heavy chain (MHC) gene is restricted primarily to cardiac myocytes. To date, several positive regulatory elements and their binding factors involved in alpha-MHC gene regulation have been identified; however, the mechanism restricting the expression of this gene to cardiac myocytes has yet to be elucidated. In this study, we have identified by using sequential deletion mutants of the rat cardiac alpha-MHC gene a 30-bp purine-rich negative regulatory (PNR) element located in the first intronic region that appeared to be essential for the tissue-specific expression of the alpha-MHC gene. Removal of this element alone elevated (20- to 30-fold) the expression of the alpha-MHC gene in cardiac myocyte cultures and in heart muscle directly injected with plasmid DNA. Surprisingly, this deletion also allowed a significant expression of the alpha-MHC gene in HeLa and other nonmuscle cells, where it is normally inactive. The PNR element required upstream sequences of the alpha-MHC gene for negative gene regulation. By DNase I footprint analysis of the PNR element, a palindrome of two high-affinity Ets-binding sites (CTTCCCTGGAAG) was identified. Furthermore, by analyses of site-specific base-pair mutation, mobility gel shift competition, and UV cross-linking, two different Ets-like proteins from cardiac and HeLa cell nuclear extracts were found to bind to the PNR motif. Moreover, the activity of the PNR-binding factor was found to be increased two- to threefold in adult rat hearts subjected to pressure overload hypertrophy, where the alpha-MHC gene is usually suppressed. These data demonstrate that the PNR element plays a dual role, both downregulating the expression of the alpha-MHC gene in cardiac myocytes and silencing the muscle gene activity in nonmuscle cells. Similar palindromic Ets-binding motifs are found conserved in the alpha-MHC genes from different species and in other cardiac myocyte-restricted genes. These results are the first to reveal a role of the Ets class of proteins in controlling the tissue-specific expression of a cardiac muscle gene.  相似文献   

15.
OBJECTIVE: To analyze the effect of the long-acting calcium channel blocker lacidipine on cardiovascular remodeling induced by salt loading in a genetic model of hypertension. DESIGN: We examined the influence of threshold doses of lacidipine, with little blood-pressure lowering effect, on cardiac weight and gene expression in stroke-prone spontaneously hypertensive rats (SHRSP). METHODS: SHRSPs (8-week-old) were randomly allocated to four groups: control, salt-loaded SHRSP and salt-loaded SHRSP treated with lacidipine at 0.3 and 1 mg/kg per day. Systolic blood pressure was measured by the tail-cuff method. At the end of 6 weeks of treatment, ventricles were collected and weighed. Ventricular messenger RNA was extracted and subjected to Northern blot analysis. RESULTS: Lacidipine (0.3 mg/kg per day) not only prevented the salt-dependent cardiac hypertrophy and the slight increase in systolic blood pressure induced by salt, but also prevented, largely or completely, salt-dependent increases in ventricular levels of several gene products: skeletal and cardiac alpha-actin, beta-myosin heavy chain (beta-MHC), type I collagen, long-lasting (L)-type calcium channel and preproendothelin-1. At a higher dose of 1 mg/kg per day, lacidipine further decreased systolic blood pressure below the level of control SHRSP, completely prevented salt-dependent overexpression of the beta-MHC gene and markedly attenuated salt-dependent overexpression of the transforming growth factor-beta1 gene. CONCLUSIONS: Lacidipine prevents the cardiac remodeling and enhanced gene expression induced by salt loading in SHRSP at doses that only minimally affect the high systolic blood pressure.  相似文献   

16.
Left ventricular hypertrophy remains a significant clinical problem and a predictor of fatal outcome in hypertension. Blood pressure per se and environmental modifiers including stress affect cardiac mass. Heat shock proteins are involved in the stress response as well as in the regulation of cardiac growth and cytoprotection. The present study evaluates heat shock protein 27 as a locus marker or candidate gene of cardiac hypertrophy in hypertension. The spontaneously hypertensive rat allele of heat shock protein 27 was associated with about a 6% increase in relative left ventricular weight (P = .0112) in 30 recombinant inbred strains from crosses of Brown Norway and spontaneously hypertensive rats. In 336 F2 crosses of spontaneously hypertensive and Wistar-Kyoto rats, the hypertensive allele was dominant and cosegregated with a similar 6% increase in the ratio of left ventricular weight to body weight (P = .0058) in rats fed a normal salt diet, but its contribution to left ventricular weight decreased in rats kept on a high salt diet. The contribution of the heat shock protein 27 allele was independent of blood pressure. We suggest that heat shock protein 27 represents a candidate gene/locus marker of cardiac hypertrophy in hypertension.  相似文献   

17.
AIMS: It is not known whether the apparent normality of echocardiographic examination results, in subjects bearing a mutation for hypertrophic cardiomyopathy but without ultrasonic left ventricular hypertrophy, is due to incomplete phenotypic expression, or inaccurate echocardiographic criteria. The aim of this study was to search for echocardiographic abnormalities in these patients. METHODS AND RESULTS: Echocardiography was performed in 100 subjects from two families with a mutation in the beta-MHC (720) or My-BPC (714) genes. We compared genetically affected subjects with an apparently normal left ventricle (thickness < 13 mm) (20 patients), and nonaffected first-degree relatives (61 normal subjects). (1) Patients had a thicker left ventricular wall (9.7 +/- 1.4 vs 8.9 +/- 1.4 mm, P = 0.03), a greater indexed mass (107 +/- 18 vs 97 +/- 17 g. m-2, P = 0.03), a larger left atrium (27 +/- 9 vs 23 +/- 10 mm3, P = 0.09) and lower wall stress (78 +/- 11 vs 89 +/- 15 10(3) dynes. cm-2, P = 0.002); these differences were highly significant after adjustment for height, age and systolic blood pressure either for wall thickness (P = 0.000003), mass (P = 0.005) or atrial volume (P = 0.001), and the ventricular systolic dimension appeared smaller (P = 0.01); (2) results remained significant (P < 0.01) when a lower cut-off value (< or = 11 mm) or only adults (> or = 18 years) were considered; (3) a subanalysis of Family 714 (13 patients, 25 normals matched for sex, age and height) showed the same trends. CONCLUSION: In familial hypertrophic cardiomyopathy, genetically affected subjects with an apparently normal heart by echocardiography show slight ultrasonic structural and functional left ventricular modifications, suggesting that the phenotype of the disease is a continuous spectrum from normal structure to typical hypertrophy.  相似文献   

18.
It is well-known that cardiac hypertrophy and arterial and renal dysfunction are serious complications of hypertension. Therefore, we investigated the chronic effects of 606A (2-propyl-3-[2'(1H-tetrazole-5-yl)biphenyl-4-yl]methyl-5-acetyl-4,5,6,7- tetrahydro imidazo [4,5-c]pyridine-4-carboxylic acid disodium salt), a novel AT1-receptor antagonist, on these complications of hypertension in stroke-prone spontaneously hypertensive rats (SHRSP) using Wistar Kyoto rats (WKY) as the control. After 8 weeks treatment from 16 weeks of age with 606A by a subcutaneously implanted osmotic pump, cardiac function, cardiac weight, acetylcholine-induced endothelium-dependent relaxation in the isolated aorta and renal function were estimated. Furthermore, wall thickness of the left ventricle was studied morphologically. We found that 606A (0.3 mg, 1 mg and 3 mg/head/day) dose-dependently lowered blood pressure without any effects on heart rate in SHRSP. Long-term treatments with 606A significantly reduced cardiac weight, left ventricular wall thickness and left ventricular end diastolic pressure, whereas it did not affect cardiac contractility. Endothelium-dependent relaxation of the aorta was recovered, and total protein excretion as well as total protein excretion/creatinine excretion ratio was reduced to the level of WKY by the treatment. These results suggest that 606A not only has a hypotensive effect but also protects cardiac, renal and vascular tissues from complications of hypertension. Thus, 606A could be an useful drug for treatment of hypertension.  相似文献   

19.
In the general population and in patients with essential hypertension the presence of left ventricular hypertrophy is a powerful predictor of cardiovascular events, independent of blood pressure and other cardiovascular risk factors. The prevalence of left ventricular hypertrophy increases with age and with the severity of renal impairment. Left ventricular hypertrophy is also a sensitive indicator of vascular structural changes in both large and small arteries. The possibility of reversing left ventricular hypertrophy therefore represents a major therapeutic goal for the treatment of hypertensive patients. Several studies examining the characteristics of left ventricular hypertrophy in the elderly, the interrelations between cardiac and vascular hypertrophy, the possibility of reversing left ventricular hypertrophy and its consequent prognostic value will be reported and commented on in the present review.  相似文献   

20.
AIM: To study the effects of propranolol and bepridil on levothyroxine-induced rat cardiac hypertrophy and mitochondrial Ca2+ Mg(2+)-ATPase activity elevation. METHODS: Rat heart hypertrophy was induced by i.p., levothyroxine 1 mg.kg-1.d-1 x 10 d. Then rats were treated by ig propranolol (Pro) or bepridil (Bep) 10 mg.kg-1 daily. Ca2+ Mg(2+)-ATPase activity and enzyme kinetic parameters were assayed. RESULTS: The activity and Vmax of mitochondrial Ca2+ Mg(2+)-ATPase isolated from hypertrophic left ventricle were 25 +/- 4 and 35.1 +/- 0.8 mumol Pi.h-1/mg protein, respectively, those of normal were 6.7 +/- 1.8 and 10 +/- 4 mumol Pi.h-1/mg protein, respectively. Apparent K(m) of the hypertrophic group Ca2+ Mg(2+)-ATPase was 0.4 +/- 0.12 mmol.L-1 ATP, and that of normal was 0.59 +/- 0.22 mmol.L-1 ATP. The total protein quantity of hypertrophic left ventricle was 80 +/- 30 mg, and that of normal was 47 +/- 9 mg. After treated with Pro or Bep (both 10 mg.kg-1 ig), the cardiac hypertrophy was attenuated, the enzyme activity and Vmax as well as total protein quantity of hypertrophic left ventricle were reduced to normal level, but apparent K(m) was not affected. CONCLUSION: Both Pro and Bep prevented the myocardium and its mitochondria from ischemia and overload calcium injury.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号