首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 27 毫秒
1.
The flux diffusion into a superconducting long rod of square cross-section in the flux flow regime is investigated numerically for sinusoidal variations of the external magnetic field. The real and imaginary parts of first harmonic as well as its penetration depth are determined in function of the field frequency. This penetration depth, which decreases exponentially in function of the frequency, is influenced by the change of the flux front shape from square to circular at low frequencies and seems to be a scaling length for both components of the first harmonic.  相似文献   

2.
In recent years, there are fast-increasing concerns on the utilizations of superconducting rotating electrical machines in different application areas, such as ship propulsion systems, aircraft drivers, and wind turbine generators, since these machines exhibit the merits of high current density, compact design, high power density, light weight, high torque density as well as high efficiency. One of the main limitations in front of the vast use of superconducting tapes in the fabrication of electrical machineries is AC magnetizing loss when tapes are exposed to an external magnetic field, which can decrease the critical current density of wires, as well. In the literature, most of the research works have been done on calculation of the AC magnetizing loss under a pure external magnetic field, while in reality, magnetic flux lines in AC electrical machines are usually distorted with harmonics because of different reasons such as distorted leakage flux, distributed coils of a winding in several slots, cogging fields, mechanical faults, etc. Since these distorted fields contain harmonics, then in this paper, the AC magnetizing loss of superconducting tapes has been electromagnetically modeled and calculated when they are subjected to nonsinusoidally distorted external magnetic fields. The magnetic field dependency of critical current density has been considered in a proposed finite element model. The results have shown that the AC magnetizing loss increases significantly under a distorted applied field compared with a sinusoidal one. In addition, the loss increase depends on the harmonic content which would increases drastically with total harmonic distortion of the applied magnetic field.  相似文献   

3.
开展了光纤激光对二维编织碳纤维/环氧复合材料的烧蚀试验研究,获得了不同入射热流条件下编织复合材料的烧蚀特征,分析了激光烧蚀机制。结合非接触测温和接触测温两种方法开展试验,采用高温红外热像仪测试了复合材料前表面的瞬态温度场演变过程,通过热电偶获得了复合材料后表面的温升数据。试验结果表明,当入射激光功率密度在102 W·cm-2量级时,二维编织碳纤维/环氧树脂复合材料的环氧树脂发生了明显的质量迁移,而碳纤维形貌变化不大;在强激光辐照过程中,二维编织碳纤维/环氧树脂复合材料的前后表面温差较大,前表面最高温度接近2 000℃,而后表面最高温度在200~500℃之间。  相似文献   

4.
K. Kwasnitza 《低温学》1973,13(3):169-174
Experimental investigations of the stability behaviour of NbTi filamentary superconducting composites in a time-varying external magnetic field are reported. The magnetization due to the induced interfilamentary screening currents shows flux jumps. The influence of this sort of flux jump on dH/dt and on the twist rate has been measured, together with the influence exerted by the presence of a thin high-resistivity CuNi sheath surrounding the filaments.  相似文献   

5.
The paper reviews a concept of induced spin-flop domain inside vortices in an antiferromagnetic superconductor. Such phenomenon may occur when an external magnetic field is strong enough to flip over magnetic moments in the core of the vortex from their ground state configuration. The formation of the domain structure inside vortices modifies the surface energy barrier of the superconductor. During this process the entrance of the flux is stopped and a newly created state exhibits perfect shielding. Such behavior should be visible as a plateau on the dependence of flux density as a function of the external magnetic field. The end of the plateau determines the critical field, which has been called the second critical field for flux penetration. Moreover, it is predicted and described how this phenomenon modifies flux creep in layered superconductors. The various scenarios of changing the creep regime from thermal to quantum and vice versa at constant temperature are discussed.  相似文献   

6.
7.
A study of hysteresis in Clarke solder-blob junctions has been carried out in the temperature range 4.2–1.2 K. The temperature dependence of the critical current, the variation of the constant-temperature critical current with sequential sweep cycles, and the effects of an external field are studied. All the experimental results are explained as due to a net trapping of magnetic flux in the junction loop whenever a hysteretic curve is traced. The origin of the flux can be traced to the inductance of the superconducting loop and the electrical or geometrical asymmetry.  相似文献   

8.
The effect of an external nonuniform magnetic field on the flux creep rate in a high-temperature superconductor with trapped magnetic flux was studied. The magnetic relaxation was suppressed when the superconductor was put into a field of permanent magnets or when it approached a ferromagnet. The effect arises when the field sources (being magnetized, the ferromagnet produces its own field) are placed near the superconductor surface, where the flux line ends are located. For these cases, we carried out the calculations of vortex and current density distributions, which demonstrate that reverse currents flow in the near-surface regions of the sample. This verifies the hypothesis suggested earlier about the influence of counter Lorentz forces retarding the creep of the vortices. In the interpretation of the results, we also take into consideration the magnetic force acting on the vortex ends in the external nonuniform magnetic field that allows us to explain the experimental results, in which the current structure in the sample is unipolar.  相似文献   

9.
Magnetic microcomposites were fabricated by emulsification of a mixture of polydimethylsiloxane (PDMS) and nickel microparticles. The composites were obtained in a temperature-controlled water-surfactant media with and without the influence of an external magnetic field. The presence of a moderate external magnetic field of 80 G (8 mT) during the polymerization stage leads to the arrangement of nickel microparticles into chains that form the magnetic core of the synthesized composites. The method allows controlling the shape of the composite particles by applying a magnetic field and varying the stirring speed. Three shapes of composite particles, namely spherical, teardrops, and ellipsoidal, were obtained and magnetically characterized. Room temperature hysteresis loops and dM/dH versus H curves in the second-to-third quadrants show that spherical particles are isotropic while non-spherical particles show an induced uniaxial magnetic anisotropy which depends on the shape of the resulting composite particles.  相似文献   

10.
Superconducting loops containing a π-junction are predicted to show a spontaneous magnetic moment in zero external magnetic field. In order to confirm this longstanding prediction experimentally, we performed magnetization measurements on individual mesoscopic superconducting niobium loops with a ferromagnetic (PdNi) π-junction. The loops are prepared on top of the active area of a micro Hall-sensor based on high mobility GaAs/AlGaAs heterostructures. We observe switching of the loop between different magnetization states at very low-magnetic fields, which is asymmetric for positive and negative sweep direction. This is evidence for a spontaneous current induced by the intrinsic phase shift of the π-junction. In addition, the presence of the spontaneous current at zero applied field is directly revealed by an increase of the magnetic moment with decreasing temperature, which results in a half integer flux quantization in the loop at low temperatures. This work is dedicated to H. von L?hneysen on the occasion of his 60th birthday.  相似文献   

11.
We study analytically and numerically the interaction of vortices in current-carrying narrow superconducting strips. The characteristic time of vortex-antivortex pair annihilation and the energetic losses in the strip are evaluated as a function of the external transport current and width of the strip. The effects of an external magnetic field on the motion of a single vortex are discussed.  相似文献   

12.
The broadening of the resistive transition in magnetic field and isotherms of magnetoresistance of bulk composites Y–Ba–Cu–O + CuO have been studied. These composites exhibit large magneto-resistive effect in a wide temperature range below T C due to weakening of Josephson coupling in this system. The broadening of the resistive transition and magnetoresistance are explained well by the Ambegaokar–Halperin (AH) model for phase slip in Josephson junctions. The magnetic field dependence of pinning potential in the intergrain boundaries deduced from AH model found out to be similar to that of critical current of an array of Josephson junctions. The values of pinning energy point out that the large magneto-resistive effect observed in the composites results from flux flow-like processes at the intergrain boundaries.  相似文献   

13.
《Composites Science and Technology》2006,66(11-12):1558-1563
We reported a novel 1–3 nanocomposite consisting of carbon-coated nickel (Ni@C) nanoparticles and epoxy resin matrix, in which nanoparticles were found one-dimensional-aligned by applying hybrid electric and magnetic fields during the curing of resin. The alignment was explained based on the dipole–dipole interaction between Ni@C nanoparticles under external fields. The dc resistivity, dielectric constant and dielectric loss of composites were tested as the function of the loading content and external fields. The results show the resistivity of aligned composites decreases by 3–4 orders of magnitude than that of random composites in the loading content range of 3–10 wt%, accompanied with an increase in dielectric constant and dielectric loss. Specially, it deserves to note that the synergistic effect of electric field and magnetic field was observed.  相似文献   

14.
In order to enhance the field-trapping ability of high T c superconducting melt-textured bulk materials which act as quasi-permanent magnets when they capture the external magnetic fields, it is important to enhance the mechanical toughness of the materials to stand the stress induced by the magnetic repulsive force and thermal expansion. We adopted a dense Dy123-based bulk material with reduced void concentration in the experiment. Since the heat generations due to the flux motions in the samples results in the degradation of J c, the time evolutions of the trapped magnetic fields and the temperature rises during and after the pulsed-field magnetizing processes were precisely measured at the same time to evaluate the penetrating flux motions and the heat generations in the sample. A single and couple of the magnetic pulsed fields with various intensities were successively applied to the sample at 30 K. The single magnetic field application exhibited a peak effect in the trapped-field behavior and tended to decline due to the heat generation. In the iterative pulsed-field application, the behaviors of the trapped fields and the temperature changes were found to be inverse between the first and the second pulsed-field applications. This implies that the flux penetration behavior into the sample magnet at the second field application is strongly restricted by the presence of former trapped fields which were formed by the first field applications.  相似文献   

15.
Magnetic composites of nickel-coated carbon nanofibers have been successfully fabricated by employing a simple microwave-assisted procedure. The scanning electron microscopy images show that a complete and uniform nickel coating with mean size of 25 nm could be deposited on carbon fibers. Magnetization curves demonstrate that the prepared composites are ferromagnetic and that the coercivity is 96 Oe. The magnetic carbon nanofibers can be aligned as a long-chain structure in an external magnetic field.  相似文献   

16.
目的 研究外加纵向磁场对倾斜电极TIG焊接的电弧温度分布、流动模式和工件所受热力作用的影响.方法 建立磁场-电弧复合焊接热、电、磁、流动的三维数学模型.通过数值模拟和高速摄像实验,揭示倾斜电极电弧在外加磁场作用下的流动、形貌及温度演化机制.结果 外加纵向磁场后,电弧流动速度明显增加,流动模式由沿电极方向喷射变为近似沿竖直方向旋转向下的流动模式;电弧对工件的热作用均匀性提高,热作用中心向电极正下方靠近,但在焊接横向方向上存在偏离;工件受到表面的电弧旋转拖拽力和内部的旋转洛伦兹力作用,最大洛伦兹力可达50000 N/m3.结论 基于所建立数学模型的模拟结果与实验电弧形貌吻合良好,结果表明,外加纵向磁场能够显著改变电弧的形态及流动模式,提高电弧热流密度的均匀性,并能够对熔池产生有效的搅拌作用.  相似文献   

17.
Epoxy resin/Ni@C nanoparticle composites with aligned microstructure were prepared by using a procedure of magnetic field assisted curing. The results show that the resistivity of composites exhibits negative temperature coefficient (NTC) effect above room temperature, and can be adjusted by varying the content filler and the magnitude of magnetic field applied. Hill's quantum tunneling model was modified to understand the electrical conduction mechanism in the composites. It shows that the NTC effect ascribes to the dominant thermal activated tunneling transport of electron across adjacent nanoparticles, as well as the low thermal expansivity of epoxy resin matrix.  相似文献   

18.
A. Philipp  K. Luders  K.D. Kramer 《低温学》1978,18(12):641-645
The temperature and magnetic field dependences of the surface impedance of Nb50wt/oTi were investigated with a TE011-mode cavity operated at a frequency of 9.67 GHz. The results with the cavity cooled down in the earth's magnetic field show good agreement with the BCS-behaviour of the surface resistance in the Meissner state when a reduced gap, of 1.97, and a mean free path of 0.5 nm are assumed. Measurements in external magnetic fields up to 3 T were used to obtain the flux flow resistivity (FFR) of NbTi. The FFR obtained in this way shows a marked deviation from the phenomenological straight line behaviour , which has been found all low- and medium-K superconductors. This indicates that the high K of NbTi leads to reduced flux flow losses at lower magnetic fields in qualitative agreement with calculations by Hu and Thompson for gapless high-K superconductors. Investigations of the temperature dependence of the ffr resulted in a resistance minimum being deeper and occurring at higher temperatures than those which have been reported for all other materials investigated to date.  相似文献   

19.
We consider the effect of charge discreteness in a quantum circuit with inductance L. The inductance is pierced by a time-depending external magnetic field, which creates a time-dependent magnetic flux /spl phi//sub ext/(t). When the external magnetic flux varies linearly with time, the induced current in the inductance oscillates with a frequency proportional to the flux variation and charge discreteness. This phenomenon is equivalent to well-known Bloch's oscillation in crystal or periodic superlattices heterostructures. In fact, formally, the charge discreteness plays the role of a lattice constant. The same phenomenon occurs when the flux variations are replaced by a (constant) electromotive force. We expect this phenomena to be realized in micrometer sized solid-state systems.  相似文献   

20.
Based on the flux creep equation, the effect of critical current density and critical temperature on ac susceptibility is investigated numerically in a superconducting slab immersed in an ac magnetic field. The current density dependence of the flux creep activation barrier is employed as the logarithmic law. The fundamental ac susceptibilities of the slab as a function of temperature for the same ac field have been derived in a unified picture. The results show that ac susceptibility in flux creep regime is affected by critical current density and critical temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号