首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Research of the resistance characteristics of YBCO tape under short-time DC large current impact is the foundation of the developing DC superconducting fault current limiter (SFCL) for voltage source converter-based high voltage direct current system (VSC-HVDC), which is one of the valid approaches to solve the problems of renewable energy integration. SFCL can limit DC short-circuit and enhance the interrupting capabilities of DC circuit breakers. In this paper, under short-time DC large current impacts, the resistance features of naked tape of YBCO tape are studied to find the resistance – temperature change rule and the maximum impact current. The influence of insulation for the resistance – temperature characteristics of YBCO tape is studied by comparison tests with naked tape and insulating tape in 77 K. The influence of operating temperature on the tape is also studied under subcooled liquid nitrogen condition. For the current impact security of YBCO tape, the critical current degradation and top temperature are analyzed and worked as judgment standards. The testing results is helpful for in developing SFCL in VSC-HVDC.  相似文献   

2.
A rectifier type superconducting fault current limiter (SFCL) with non-inductive reactor has been proposed. The concept behind this SFCL is the appearance of high impedance during non-superconducting state of the coil. In a hybrid bridge circuit, two superconducting coils connected in anti-parallel: a trigger coil and a limiting coil. Both the coils are magnetically coupled with each other and have same number of turns. There is almost zero flux inside the core and therefore the total inductance is small during normal operation. At fault time when the trigger coil current reaches to a certain level, the trigger coil changes from superconducting state to normal state. This super-to-normal transition of the trigger coil changes the current ratio of the coils and therefore the flux inside the reactor is no longer zero. So, the equivalent impedance of both the coils increased thus limits the fault current. We have carried out computer simulation using EMTDC and observed the results. A preliminary experiment has already been performed using copper wired reactor with simulated super-to-normal transition resistance and magnetic switches. Both the simulation and preliminary experiment shows good results. The advantage of using hybrid bridge circuit is that the SFCL can also be used as circuit breaker. Two separate bridge circuit can be used for both trigger coil and the limiter coil. In such a case, the trigger coil can be shutdown immediately after the fault to reduce heat and thus reduce the recovery time. Again, at the end of fault when the SFCL needs to re-enter to the grid, turning off the trigger circuit in the two-bridge configuration the inrush current can be reduced. This is because the current only flows through the limiting coil. Another advantage of this type of SFCL is that no voltage sag will appear during load increasing time as long as the load current stays below the trigger current level.  相似文献   

3.
There are many irreplaceable advantages of high temperature superconducting (HTS) fault current limiter, applying in electric utilities. It is expected to be able to solve excessive fault current problems and to enhance safety and stability of power systems. In this paper, the R and D of an improved bridge-type 10.5 kV three-phase superconducting fault current limiter (SFCL) was present. Each phase adopted a HTS coil with inductance of 6.2 mH. The three coils wound with 8,571 m Bi2223/Ag tapes totally. After installation at a 110 kV/10.5 kV substation in Hunan Province of China, the performances of the whole SFCL were tested, including a three-phase-to-ground short circuit experiment at the pre-setup short circuit point. And then, the SFCL was put into operations in the 10.5 kV power grids for more than 11000 h. About 3 years later, the SFCL was moved, reinstalled, and put into operation again since February 16 of 2011 at a 10.5-kV superconducting power substation located in Baiyin, Gansu Province of China. In this paper, the redesigned and manufactured cryostats with nonmagnetic stainless steel, tests, and long-term operations of the SFCL in 10.5 kV power grids were also described in detail.  相似文献   

4.
This paper presents a comparative study of resistive and inductive superconducting fault current limiter (SFCL) for power systems transient stability improvement. Two applications of transient stability assessment are presented in this paper: The first shows the efficiency of the resistive and inductive SFCL in series with a generator, the second uses SFCL installed in series with a transmission line. SFCL can just be operated during the period from the fault occurrence to the fault clearing; the modeling and the effect of SFCL has been investigated to have higher benefits for the power system. In the present work, modification of the admittance matrix method is used for modeling of SFCL; Critical Clearing Time (CCT) has been used as an index for evaluated transient stability. The transient stability is assessed by the criterion of relative rotor angles, using the Runge–Kutta method. The effectiveness of the proposed method is tested on the WSCC3 nine-bus system applied to the case of three-phase short circuit fault in one transmission line. A simulation and comparison are presented in this document.  相似文献   

5.
J. Sim  H.R. Kim  B.W. Lee  I.S. Oh 《低温学》2007,47(3):183-188
We present the fabrication and short circuit test results of a 14 kV single-phase resistive superconducting fault current limiter (SFCL) based on YBa2Cu3O7 (YBCO) films. Individual components were processed using the 4″ YBCO films and have the rated voltage and current of 600 V and 35 A at 77 K, respectively. Twenty four components, eight components in series and three lines in parallel, make a module having the rated voltage and current of 4.8 kV and 105 A, respectively. Three modules were assembled in series to produce the SFCL working at 77 K, a 14 kV single-phase machine for the 22.9 kV Y-Y grid. short circuit tests were successfully conducted in an accredited test facility with the maximum fault currents up to 14.1 kAP. All components quenched together upon faults and shared the rated voltage evenly without any supplementary device between the modules. This proves that the SFCL based on YBCO films may not only work reliably at 22.9 kV, but also provide technical feasibility for higher voltage application including the transmission grids.  相似文献   

6.

In practice, yttrium barium copper oxide (YBCO) tapes often experience different types of fatigue loadings including continuous winding stress, repeated thermal cycles, and periodic electromagnetic force, consequently resulting in a poor performance. Based on cyclic loading tests in the structural design of some large YBCO superconducting devices, a 95% critical current (Ic) retention tensile stress criterion was proposed. Although the relationship between critical current and stress/strain has been extensively studied by some research teams, the effects of fatigue loading on macro-behavior, microstructure, and electromechanical responses have not been much reported. In this paper, the tapes were made using ion-beam-assisted deposition combined with pulsed laser deposition. Under the self-field, they were subjected to many cycles of axial loading to test their fatigue behavior. In this work, first, we report the effects of fatigue numbers on YBCO tapes’ tensile responses (e.g., Tensile Strengths) and electromechanical behaviors. Macro-behavior measurements showed that the mechanical behaviors and their electromechanical degradation of YBCO superconducting tapes depended on the number of fatigue loading cycles. Then, fracture surface morphologies of YBCO tapes’ superconducting layer and Hastelloy layer were also investigated with scanning electron microscope and energy-dispersive X-ray spectroscopy. It was found that the width of scratch lines and the size of fatigue defects on Hastelloy layer were increased with the number of fatigue cycles, which was the main cause of the degradation of mechanical properties. Moreover, observations of the microstructure conducted on the YBCO layer demonstrated that it was the crack motion and evolution that led to the current degradation under fatigue loading. During the process of fatigue loading, the small fatigue cracks become big with the increasing fatigue number. Lastly, a critical current-strain model of the fatigued HTS tapes, that combines the Ekin power-law formula and the Weibull distribution function, is proposed. This model can predict the electromechanical property of fatigued YBCO tapes under uniaxial tensile strain well.

  相似文献   

7.
We should prevent non-uniform current distribution due to manufacturing errors of tape size, coil size, and conductor deformation in the toroidal coil composed of multiple YBCO double pancake coils. This is because the non-uniform current distribution causes the increase of AC losses and the decrease of critical current in the YBCO tapes. Therefore, we analytically investigated the relationship between the manufacturing error and the current distribution in the toroidal coils composed of the eight series-connected double pancake coils composed of the transposed conductor with two parallel-connected YBCO tapes and the eight sets of two parallel-connected double pancake coils composed of single YBOC tape conductor connected in series. The parallel-connected multiple double pancake coils composed of single tape conductor is much more effective for preventing the non-uniform current distribution than the double pancake coil composed of the transposed conductor with parallel-connected multiple tapes. The non-uniformity of current distribution can be improved by increasing the length of parallel-connected current path by increasing the number of series-connected double pancake coils in each current path.  相似文献   

8.
Information about AC losses and electromagnetic behaviour is essential when designing superconducting cables. In this work, AC losses of coaxial YBCO cables are determined using circuit analysis based computational model tailored for the needs of the YBCO cable design work. In the equivalent circuit superconducting layers are connected in parallel, the layers have an inductive coupling between each other and AC loss within a layer generates an effective resistance. The layer currents can be solved from a set of circuit equations. The computational model takes into account that the current in the cable creates magnetic field, which generates magnetisation loss and affects strongly the critical current of the YBCO tapes. The model was applied on several coaxial superconducting YBCO cable designs, which had nominal currents of 1-10 kA (rms). Low AC loss values were predicted for these compact YBCO cable designs. For example, AC losses less than 4 W/m were predicted for 10 kA cables.  相似文献   

9.
For the design of superconducting fault current limiter, the research about recovery time and AC loss is essential issue because this characteristic is closely related to stability and efficiency. In general, superconducting fault current limiter (SFCL) modules can be made into pancake or solenoid type coil. While the pancake type coil has smaller AC loss, it has longer recovery time compared with the solenoid type coil. In this paper, a new pancake type coil was proposed to decrease recovery time by improving their cryogenic condition. A new pancake type coil is made with spacers between adjacent superconducting tapes. However, as the thickness of the spacer was increased, the AC loss was increased unlike the recovery characteristic. From the experimental results, our group confirmed that the pancake type coil with the spacer has trade-off relationship between AC loss and recovery characteristics with the spacer thickness.The proposed results in this paper would be utilized to design superconducting fault current limiters.  相似文献   

10.
Superconducting fault current limiter (SFCL) has become one of the most ideal current limiting devices to solve the problem of increasing short-circuit current in high-voltage power grid. This paper presents a resistive-type SFCL model developed using simulation software PSCAD/EMTDC. After being verified by finite-element model and experimental results, the model is used to study the impact of SFCLs on the power grid and the co-ordination between SFCL and relay protections in 10 kV distribution network. A series of simulations are carried out to find appropriate parameters of SFCL model to cooperate with relay protection devices. The final result in this paper could provide important quantitative basis of parameters for SFCL to be applied in a real power system.  相似文献   

11.
Superconducting fault current limiter, SFCL, forms an important category of fault-current-limiting devices which limit the short-circuit current levels in electrical networks. Therefore, modeling its operation and anticipating its characteristic parameters are too important in its design and optimization process. In this paper a novel integrative method has been proposed which predicts, with a good accuracy, the behavior of inductive shield-type SFCL in different circumstances and approximates its main operational characteristics, as the through current, the inductance and the voltage-current characteristics. An algorithm is presented to calculate the exact distribution of magnetic flux and supercurrent density inside the superconductor bulk in different operational conditions using the well-known Bean model and for the first time the flux pinning effect has been taken into account in SFCL operation modeling. For estimation of flux density distribution outside the superconductor bulk, the FEM analysis has been utilized. An iterative method has been used, based on the numerical solution of differential equations, to calculate the instant value of the SFCL through-current and inductance. The proposed method of modeling has been studied on a specific design of shield-type SFCL and its through current in normal and fault conditions of a test circuit, variation of its inductance with time and its voltage-current characteristic are calculated theoretically. A prototype has been fabricated based on the studied SFCL design and has been tested experimentally. The comparison of the experimental and theoretical results shows that this modeling predicts the SFCL operation with a good accuracy.  相似文献   

12.
The development of power transmission lines based on long-length HTS tapes requires the production of high quality tapes. Due to fault conditions, technical mistakes and human errors during the operation of a DC power transmission line, an over-current pulse, several times larger than the rated current, could occur. To study the effect of such over-current pulses on the transport current density distribution in the HTS tapes, we simulated two start-up scenarios for one BSCCO and two YBCO tapes. The first start-up scenario is an initial over-current pulse during which the transport current was turned on rapidly, rising to 900 A during the first milliseconds, then reduced to a 100 A DC current. The second start-up scenario is normal operation, and involved increasing the transport current slowly from 0 A to 100 A at a rate of 1 A/s. For both scenarios, we then measured the vertical component of the self-magnetic field by means of a Hall probe above the tape, and afterward, by solving a linear equation of the inverse problem we obtain the current density profiles. We observe a change of the self-magnetic field above the edge of the BSCCO and YBCO tapes during 30 min after the 5 ms of over-current pulse and during the normal operation. The current density profiles are peaked in the centre for over-current pulse, and more peaked around the edge of the HTS tape for normal operation, which means that the limited time over-current pulse changes the current density profiles of the HTS tapes. We observe also a loop of current for YBCO tapes and we show the role of the HTS tape stabilizer.  相似文献   

13.
The authors constructed and tested a model superconducting fault current limiter (SFCL) using a high-temperature superconducting film according to a design that includes a vacuum interrupter with an electromagnetic repulsion mechanism. The superconductor and the vacuum interrupter are connected in parallel with a bypass coil. If a fault occurs and current flows through the system, the superconductor is quenched and the current is transferred to the parallel coil because of the voltage drop in the superconductor. This large current in the parallel coil actuates the magnetic repulsion mechanism of the vacuum interrupter. On opening the vacuum interrupter, the current in the superconductor is interrupted. This model is expected to exhibit very low-energy consumption by the superconductor. The authors succeeded in interrupting the current flowing in the superconductor within a half-cycle using a prototype SFCL. An improved SFCL with higher voltage and current ranges was used to carry out current-limiting tests and to investigate the possibility of adapting our SFCL in a power system. The authors also carried out a currentlimiting test using a conventional high-speed vacuum circuit breaker (HSVCB) as a new method for realising our concept.  相似文献   

14.
In a power grid, the superconducting power devices might also experience lightning impulse current except for the common over-currents. However, the study of the performance of YBCO tapes suffering a lightning current is scarcely reported. This paper mainly focuses on the influence of the substrate layer on the thermal stability of YBCO tapes suffering a lightning current. A numerical model which took into account both the thermal and the electromagnetic aspects was proposed. The validity of this model was verified by experiment. Based on this model, the influence of the dimension and material type of thesubstrate layer on the thermal stability were investigated in detail. The simulated results showed that the substrate layer could affect the temperature distribution on different layers, and stainless steel substrate layer is a more desired choice for decreasing the maximum temperature. Moreover, a theoretical explanation based on a simplified equivalent circuit was also used to study the influence of the substrate layer.  相似文献   

15.
The characteristics of a flux-coupling type superconductor fault current limiter (SFCL) with pancake coils are investigated in this paper. The conventional double-wound non-inductive pancake coil used in AC power systems has an inevitable defect in Voltage Sourced Converter Based High Voltage DC (VSC-HVDC) power systems. Due to its special structure, flashover would occur easily during the fault in high voltage environment. Considering the shortcomings of conventional resistive SFCLs with non-inductive coils, a novel flux-coupling type SFCL with pancake coils is carried out. The module connections of pancake coils are performed. The electromagnetic field and force analysis of the module are contrasted under different parameters. To ensure proper operation of the module, the impedance of the module under representative operating conditions is calculated. Finally, the feasibility of the flux-coupling type SFCL in VSC-HVDC power systems is discussed.  相似文献   

16.
A dynamic model for the closing process of a medium-voltage vacuum circuit breaker (MWCB) is constructed, and the automatic dynamic analysis of mechanical system software is applied to construct the model by taking electrodynamic force into account. After the electrodynamic force is worked out, the model is employed to investigate the mechanical characteristics during the closing process of a MWCB under the influence of electrodynamic force. The characteristics are also investigated through experiment. Moreover, the simulation and experimental results are in close agreement. The results show that the electrodynamic force not only reduces the moving speed of the main axle's angle to a certain degree but also influences the four parameters used to describe the performance of mechanical characteristics. The simulation and experimental results presented here can be used to highlight the design criteria on the optimal operation and condition monitoring of MWCBs.  相似文献   

17.
We have developed a nonaqueous-based process for electrodepositing a Cu-stabilization layer on a YBCO superconductor tape. Conventional approaches to electroplating Cu layers use a cyanide-based solution to prevent uncontrolled hydrogen evolution from the aqueous-based solution; these are very reactive with the superconductor layer, and thus destroy its critical-current capability when plated directly onto high-temperature superconductor (HTS) tape. It has been found that a capping layer at least 1 micron thick is needed between the superconductor and stabilizer layers to avoid such a reaction and the subsequent reduction in the critical-current capability of the superconductor layer. In contrast, the nonaqueous electroplating solution is nonreactive to the HTS layer, allowing the Ag capping layer to be thinner. We demonstrated that direct Cu plating on YBCO tapes using a nonaqueous solvent does not destroy the superconducting YBCO layer. The superconducting current capabilities of these tapes were measured by noncontact magnetic measurements. Contact current?Cvoltage (I?CV) measurements required a 0.1-micron-thick Ag capping layer on YBCO tapes, which is sufficient for subsequent Cu plating from the non-aqueous solvent.  相似文献   

18.
The over-current performance of high-temperature superconductors (HTSs) has been well studied. However, the superconducting devices used in power grid might also suffer lightning current. In previous researches, we have investigated the influences of the substrate layer, encapsulation layer, and tape dimension on the thermal stability of yttrium barium copper oxide (YBCO) tapes after suffering a lightning current. However, in this paper, we will focus on the maximum endurance lightning currents (MELCs) of different HTS tapes including YBCO and BSCCO tapes. We prepared and tested seven HTS samples. The critical current and n value of each sample were measured and calculated before and after the 8/20-μs lightning current tests. A maximum endurable value of lightning current which might not cause the critical current degradation was obtained from the testing results. Finally, the mechanisms causing the degradation were analyzed.  相似文献   

19.
The over-current performance of high-temperature superconductors (HTSs) has been well studied. However, the superconducting devices used in power grids might also suffer from exposure to lightning current. This paper will focus on the influence of the encapsulation layer of YBCO tapes on the performance degradation of the critical current after suffering lightning current. We prepared and tested six groups of samples with different YBCO tape widths, material types of the encapsulation layer, and thicknesses of the encapsulation layer. For comparison, the performance of YBCO tape without an encapsulation layer was also analyzed. The critical current and n value of each sample were measured and calculated before and after 8/20 μs lightning current tests. Moreover, two types of damage were observed, i.e., surface melt and delamination, and the reasons were described in detail. The results of this paper could provide useful data for selecting the encapsulation layer of YBCO tapes.  相似文献   

20.
A multi-physics finite element model of high-temperature superconductors (HTS) will be presented in this article. The electrical-thermal model is mainly based on Maxwell’s equation and basic heat transfer equation to calculate the temperature propagation along the length of the superconducting tapes. According to the calculated temperature profile during quench, the surface thermal stress of the tape is obtained by a structural model. This model can be used to evaluate the degradation of tape performance due to the surface thermal stress, and the results can be used to minimize these effects in the SFCL system. The proposed model is used to investigate the uneven tape, the thickness of the copper layer and YBCO layer which is non-uniform. Methods of smoothing the degradation effect by adding auxiliary fixed points to the tape and changing the basic thickness of copper layer are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号