首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The thrust force and torque produced during drilling contain important information related to the quality of the hole and the wear of the drill bit [1]. In this paper, the force and torque produced during drilling of carbon fibre using a ‘one shot’ drill bit is investigated. The signals in the time domain were divided into stages and common problems and defects associated with each stage discussed. It is also shown how tool wear and thickness of the workpiece affect the thrust force and torque throughout the drilling process. The findings of this paper are used to develop a mathematical model of the maximum thrust force and torque as described on Part II of this paper and are a valuable reference for future optimisation of drilling carbon composites with a ‘oneshot’ drill bit.  相似文献   

2.
Sensor integration has received considerable attention recently for monitoring machining processes. This is because it is similar to the action of an experienced machinist, who uses his different sensory devices such as hearing, sight, etc. to monitor the cutting operation. Different neural network paradigms have been attempted by researchers for this purpose. In this investigation, a multisensor approach to drill wear monitoring was studied. Four sensors, namely, thrust, torque, and strains on the machine table in two orthogonal directions perpendicular to the drill axis, were used. As shown in Part I [A. Noori-Khajavi and R. Komanduri, Int. J. Mach. Tools Manufact. 35, 000-000 (1995)] three sensor signals, namely, thrust, torque, and strain on the machine table in the X-direction, showed good correlation in the frequency domain with drill wear. In addition, the signal-to-noise ratio analysis at different states of drill wear in the frequency domain showed that as the drill wear increased, the noise also increased. In this paper, it will be shown that when sensor signals are noisy and are integrated using a neural network, such a system could actually result in the deterioration of the correct estimation of drill wear. Consequently, there appears to be no need for the integration of the sensor signals under the conditions used.  相似文献   

3.
The useful life of a cutting tool and its operating conditions largely control the economics of the machining operations. Hence, it is imperative that the condition of the cutting tool, particularly some indication as to when it requires changing, to be monitored. The drilling operation is frequently used as a preliminary step for many operations like boring, reaming and tapping, however, the operation itself is complex and demanding.

Back propagation neural networks were used for detection of drill wear. The neural network consisted of three layers input, hidden and output. Drill size, feed, spindle speed, torque, machining time and thrust force are given as inputs to the ANN and the flank wear was estimated. Drilling experiments with 8 mm drill size were performed by changing the cutting speed and feed at two different levels. The number of neurons in the hidden layer were selected from 1, 2, 3, …, 20. The learning rate was selected as 0.01 and no smoothing factor was used. The estimated values of tool wear were obtained by statistical analysis and by various neural network structures. Comparative analysis has been done between statistical analysis, neural network structures and the actual values of tool wear obtained by experimentation.  相似文献   


4.
The thrust force, torque, and tool wear in drilling of Zr-based bulk metallic glass (BMG) material are investigated. Drilling the BMG at high speed generates the chip light emission, high tool temperature, and severe tool wear. At low spindle speed, the BMG work-material builds up at the major and margin cutting edges and may break the drill. A range of feasible spindle speed and feed rate for the efficient drilling of BMG without the detrimental chip light emission and cutting edge work-material build-up has been identified in this study. Under the same drilling condition, the WC-Co tool generally requires less thrust force and about the same torque than the high-speed steel tool. The progressive wear of the major and margin cutting edges for BMG drilling is examined. Severe drill wear is associated with the bright BMG chip light emission. Without chip light emission, the drill wear is visible but not severe. This study concluded that precision holes in BMG could be generated with proper selection of tooling and process parameters.  相似文献   

5.
A decision fusion algorithm for tool wear condition monitoring in drilling   总被引:1,自引:0,他引:1  
Tool wear monitoring of cutting tools is important for the automation of modern manufacturing systems. In this paper, several innovative monitoring methods for on-line tool wear condition monitoring in drilling operations are presented. Drilling is one of the most widely used manufacturing operations and monitoring techniques using measurements of force signals (thrust and torque) and power signals (spindle and servo) are developed in this paper. Two methods using Hidden Markov models, as well as several other methods that directly use force and power data are used to establish the health of a drilling tool in order to avoid catastrophic failure of the drill. In order to increase the reliability of these methods, a decision fusion center algorithm (DFCA) is proposed which combines the outputs of the individual methods to make a global decision about the wear status of the drill. Experimental results demonstrate the effectiveness of the proposed monitoring methods and the DFCA.  相似文献   

6.
In order to extend tool life and improve quality of hole drilling in carbon composite materials, a better understanding of ‘one shot’ hole drilling is required. This paper describes the development of an empirical model of the maximum thrust force and torque produced during drilling of carbon fiber with a ‘one shot’ drill bit. Shaw's simplified equations are adapted in order to accommodate for tool wear and used to predict maximum thrust force and torque in the drilling of carbon composite with a ‘one shot’ drill bit. The mathematical model is dependent on the number of holes drilled previously, the geometry of the drill bit, the feed used and the thickness of the workpiece. The model presented here is verified by extensive experimental data.  相似文献   

7.
Productivity and quality in the finish turning of hardened steels can be improved by utilizing predicted performance of the cutting tools. This paper combines predictive machining approach with neural network modeling of tool flank wear in order to estimate performance of chamfered and honed Cubic Boron Nitride (CBN) tools for a variety of cutting conditions. Experimental work has been performed in orthogonal cutting of hardened H-13 type tool steel using CBN tools. At the selected cutting conditions the forces have been measured using a piezoelectric dynamometer and data acquisition system. Simultaneously flank wear at the cutting edge has been monitored by using a tool makers microscope. The experimental force and wear data were utilized to train the developed simulation environment based on back propagation neural network modeling. A trained neural network system was used in predicting flank wear for various different cutting conditions. The developed prediction system was found to be capable of accurate tool wear classification for the range it had been trained.  相似文献   

8.
The hardest component of the Martian surface is believed to be basalt rock, which is highly abrasive in nature. It will be important to operate a Martian drill under conditions that are conducive to minimal tool wear. In preparation for a Mars drilling project, this paper reports results of an experimental study of dry drilling in basalt and related tool wear. It also reports the effect of the tool wear on increasing the forces and torques required when drilling in basalt rock (on earth) using polycrystalline diamond (PCD) compact core drill inserts. Force and torque data measured for a variety of cutting conditions are shown along with experimental wear data obtained while drilling in basalt rock having different strengths. It is found that flank wear, VB, and cutting edge radius, CER, wear rates increase with rock strength, VB-wear rates and CER-wear rates exhibit opposite trends in their dependence on the remainder of the cutting parameters. For example, while VB-wear rates decrease with an increase in tool feed and spindle speed values, CER-wear rates increase with increases in tool feed and remains unchanged with increases in spindle speed. VB-wear rates decrease as the rake angle becomes more negative, while CER-wear rates increase as this occurs. It is found that basalt rock strength manifests itself via larger (smaller) generated forces/torques for rocks of harder (softer) composition. Strong correlations are found between both modes of tool wear (VB and CER) and the measured values of thrust force and torque. Equations for progressive tool wear as functions of the process variables are developed. A model for the changing drill forces and torques required by the progressive tool wear is developed for drilling in basalt.  相似文献   

9.
In order to improve the cutting performance of drills, a thick web drill with curved primary cutting edges was devised. The curved primary cutting edge was mathematically determined by changing the distribution of the tool orthogonal rake angle along the primary cutting edge. A three-dimensional finite element analysis based on the torsional rigidity of the drill was applied to obtain the “secondary” flute shape of the drill with curved primary cutting edges and to specify the web thickness. Experiments were conducted to evaluate the drill's cutting performance. Compared with conventional twist drills of different web thicknesses, the thick web drill with curved primary cutting edges shows greater effectiveness in reducing the thrust force, the torque, and the tool wear, thus providing a better cutting ability and a longer tool life.  相似文献   

10.
In the aerospace industry, burr removal is an important and expensive part of the manufacturing process. One approach to minimizing burrs is to lower the thrust force in drilling through suitable modification of the drill geometry such as the use of step drills. This paper focuses on the modeling of thrust force and torque for step drills. A mechanistic model capturing the various material removal mechanisms, i.e. oblique cutting, orthogonal cutting, and indentation, active on different sections of the step drill is developed. Subsequently, a series of experiments is conducted to calibrate and validate the model. The validation results show that the predicted thrust and torque values are in good agreement with measured values, although the torque is slightly underestimated. The validated model was further used to investigate the effects of step drill geometry parameters on the thrust force and torque. The model predictions suggest that the thrust force increases and the torque decreases for larger secondary point angles and inner diameters.  相似文献   

11.
A time domain model of the torsional–axial chatter vibrations in drilling is presented. The model considers the exact kinematics of rigid body, and coupled torsional and axial vibrations of the drill. The tool is modeled as a pretwisted beam that exhibits axial and torsional deflections due to torque and thrust loading. A mechanistic cutting force model is used to accurately predict the cutting torque and thrust as a function of feedrate, radial depth of cut, and drill geometry. The drill rotates and feeds axially into the workpiece while the structural vibrations are excited by the cutting torque and thrust. The location of the drill edge is predicted using the kinematics model, and the generated surface is digitized at discrete time intervals. The distribution of chip thickness, which is affected by both rigid body motion and structural vibrations, is evaluated by subtracting the presently generated surface from the previous one. The model considers nonlinearities in cutting coefficients, tool jumping out of cut and overlapping of multiple regeneration waves. Force, torque, power and dimensional form errors left on the surface are predicted using the dynamic chip thickness obtained from the exact kinematics model. The stability of the drilling process is also evaluated using the time domain simulation model, and compared with extensive experiments. This paper provides details of the mathematical model, experimental verification and simulation capabilities. Although the surface finish from unstable cutting can be predicted realistically, the actual drilling stability cannot be determined without including process damping.  相似文献   

12.
Friction drilling utilizes the heat generated from the friction between the tool and the thin workpiece to form a bush for fixtures such as screw threads in plastic deformation process. This process produces no chip, shortens the time required for hole-making and incurs less tool wear, thus lengthening the service life of the drill. In this study, tungsten carbide drills with and without coating were employed to make holes in AISI 304 stainless steel, which is known to have high ductility, low thermal conductivity and great hardness. TiAIN and AlCrN were coated onto the drill surface by physical vapor deposition (PVD). Performance of coated and uncoated cutting tools was examined for drillings made under different spindle speeds. Changes in relationship between drill surface temperature, tool wear and axial thrust force during machining were also explored. Experimental results reveal that lubricating effect of the coating and low thermal conductivity of AlCrN caused AlCrN-coated drill to produce the highest surface temperature but the lowest axial thrust force with the least tool wear. However, the difference in performance between coated and uncoated drills diminished with increase in number of holes drilled.  相似文献   

13.
In automated flexible manufacturing systems the detection of tool wear during the cutting process is one of the most important considerations. This study presents a comparison between several architectures of the multi-layer feed-forward neural network with a back propagation training algorithm for tool condition monitoring (TCM) of twist drill wear. The algorithm utilizes vibration signature analysis as the main and only source of information from the machining process. The objective of the proposed study is to produce a TCM system that will lead to a more efficient and economical drilling tool usage. Five different drill wear conditions were artificially introduced to the neural network for prediction and classification. The experimental procedure for acquiring vibration data and extracting features in both the time and frequency domains to train and test the neural network models is detailed. It was found that the frequency domain features, such as the averaged harmonic wavelet coefficients and the maximum entropy spectrum peaks, are more efficient in training the neural network than the time domain statistical moments. The results demonstrate the effectiveness and robustness of using the vibration signals in a supervised neural network for drill wear detection and classification.  相似文献   

14.
Surface engineering approaches are being increasingly employed for enhancing the effective life of twist drills with a view to reduce machining costs. The electro-spark coating (ESC) technique provides a promising means of depositing wear resistant coatings that can potentially enhance the performance of these tools. However, it is often necessary to also optimize the machining conditions for coated tools to achieve an enhanced tool life. In the present investigation, varying spindle speeds were employed at a fixed vertical feed to evaluate the performance of WC-8Co ESC coated HSS drills in comparison to bare HSS drills. The number of holes drilled before reaching a preset average flank wear (0.5 mm), or catastrophic failure of the drill, was taken as the measure of tool life. The drill flank wear, monitored at regular intervals, as well as the cutting torque and thrust measured for all holes, were considered to be the key criteria for optimizing the cutting conditions. Results indicate that the WC-8Co coated drill tool life can be increased by a factor of more than 5, depending on the machining conditions selected. Furthermore, flank wear of the drill was found to increase rapidly at the end of drill life. Cutting torque data was also found to provide a useful indicator for predicting the end of tool life.  相似文献   

15.
There are many physical parameters in the cutting process that could be used for the in-process monitoring of cutting tools' working conditions. Of these parameters, cutting forces are strongly recommended by the investigators to be used because of their higher sensitivity and more rapid response to the changes in cutting states. In this paper, the variation in the dynamic behaviour of drilling thrust force and torque with drill wear, breakage and other kinds of fault forms have been investigated experimentally. The results and associated theoretical investigations indicate that, to make the monitoring system more reliable and suitable for a wider range of cutting conditions, both thrust force Fz and torque T arising from drilling operations should be taken as associated monitoring quantities, rather than choosing just one of them. The methodology of signal signature extraction and data processing techniques are discussed and a practical monitoring strategy proposed.  相似文献   

16.
Aluminium alloys, though widely used in the automotive industry, are difficult to machine, particularly by drilling and tapping without the use of metal removal fluids, because of aluminium's strong tendency to adhere to the cutting tool. Tribological tests have revealed that carbon-based tool coatings, such as diamond-like carbon (DLC), promise an improved performance due to their low friction and adhesion. However, the tribological performance of DLC coatings depends on both their hydrogen content and the testing environments. Hence the experimental approach taken in this study was designed to understand the cutting performance of hydrogenated DLC (H-DLC) and non-hydrogenated DLC (NH-DLC) tool coatings during the dry drilling of a 319 Al (Al–6%Si) alloy. An experimental drilling station was built to measure torque and thrust force changes using a cutting speed of 2500 rpm and a feed rate of 0.25 mm/rev. The cutting performance was assessed by measuring the torques and thrust forces generated during the drilling of the first 150 holes or by drill failure—depending on which occurred first. The results indicated that superior cutting performance was achieved, in both torque and thrust force responses, using DLC-coated drills rather than uncoated high-speed steel (HSS) drills. The uncoated HSS drills failed after drilling only 49 holes as a result of excessive aluminium adhesion. At least 150 holes could be drilled using the DLC-coated drills, and both the torque and thrust forces generated during drilling were lower than those with uncoated HSS drills. In addition, a smaller proportion of holes exhibited abrupt increases in torque (at the end of the drilling cycle) during drilling with the DLC-coated drills. Scanning electron microscopy (SEM) investigations showed that the H-DLC drill flutes displayed minimal aluminium clogging—resulting in lower torque. H-DLC coating also diminished metal transfer and buildup edge formation on the drill's flank face and cutting edge. Thus, torque and thrust force measurements, supported by metallographic data, indicated that H-DLC-coated drills provided better dry drilling performance than NH-DLC.  相似文献   

17.
The present study aims at the development of a new methodology for designing a curve-edged twist drill with an arbitrarily given distribution of the cutting angles along the tool cutting edge. The new methodology consists of 81 major mathematical equations and is developed using a method of mapping relevant planes and straight lines of a cutting tool (such as the cutting plane and the cutting edge) as corresponding image points and image lines on a projection plane. The developed methodology is used to intuitively and graphically analyze and determine the relationship between the orientation of the cutting edge and the cutting angles at each point on the cutting edge. A set of image points and image lines is established to calculate the cutting angles on the cutting edge of a twist drill, including the working tool rake angle, the working tool inclination angle, the working cutting edge angle, and the working normal rake angle. Three computer case studies are provided to show curved cutting edges that correspond, respectively, to a linear distribution of the working tool rake angle, a combined linear and uniform distribution of the working tool rake angle, and a linear distribution of the working tool inclination angle along the tool cutting edge. Finally, a set of metal drilling experiments is performed to compare the drilling torque and the thrust force between a conventional straight-edged twist drill and a new curve-edged twist drill that has a combined linear and uniform distribution of the working tool rake angle along the tool cutting edge. The experimental results show that the new curve-edged drill reduces the drilling torque by 28.5% and the thrust force by 24.6% on average.  相似文献   

18.
Performance evaluation of endrills   总被引:1,自引:0,他引:1  
This paper evaluates the performance of a relatively new type of drill called an endrill which is a cross between a drill and an endmill. Investigations into the effects of its cutting conditions on the drilling forces, surface finish, drill wear and hole oversize were carried out. It was found that endrills produced better quality holes than conventional twist drills, better surface finish and less oversize of the holes. Hence, with proper feed, speed and flow rate of the pressurized flushing coolant, a good finish of about Ra = 1 μm can be attained without reaming. Thus, the productivity of finished holes can be remarkably improved. Compared to twist drills, lower torque and thrust were observed which yielded improved tool life and reduced power consumption. No “walking phenomenon” was observed when this kind of drill was used and the amount of hole oversize was found to average about 0.7% of the drill diameter as compared to 1.6% when twist drills were used. Finally, general equations for the drill torque and thrust were derived from the experimental results.  相似文献   

19.
This study investigates the tool wear in friction drilling, a nontraditional hole-making process. In friction drilling, a rotating conical tool uses the heat generated by friction to soften and penetrate a thin workpiece and create a bushing without generating chips. The wear of a conical tungsten carbide tool used for friction drilling a low carbon steel workpiece is studied. Tool wear characteristics are quantified by measuring its weight change, detecting changes in its shape with a coordinate measuring machine, and making observations of wear damage using scanning electron microscopy. Energy dispersive spectrometry is applied to analyze the change in chemical composition of the tool surface due to drilling. In addition, the thrust force and torque during drilling and the hole size are measured periodically to monitor the effects of tool wear. Results indicate that the carbide tool is durable, showing minimal tool wear after drilling 11,000 holes, but observations also indicate the progressively severe abrasive grooving on the tool tip.  相似文献   

20.
A two-stage strategy has been used to design an optimum multifacet drill (MFD) for crankshaft drilling. In the first stage, a heuristic MFD was developed by adding an additional facet to the outer corner of the conventional split-point drill. Under accelerated life test conditions, this new drill can decrease thrust force by 21.0% and increase drill life by 50% compared to a split-point drill. In the second stage, compre-hensive force models for predicting thrust and torque were modified and developed. Using the force mod-els, point optimization was carried out to design the optimum MFD. This new MFD can further decrease the thrust by 21.3 % over the heuristic MFD, and accelerated life tests haveshowna25% further increase in drill life.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号