首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A longest common subsequence (LCS) of two strings is a common subsequence of the two strings of maximal length. The LCS problem is to find an LCS of two given strings and the length of the LCS (LLCS). In this paper, a fast linear systolic algorithm that improves on previous systolic algorithms for solving the LCS problem is presented. For two given strings of length m and n, where m n, the LLCS and an LCS can be found in m + 2n – 1 time steps. This algorithm achieves the tight lower bound of the time complexity under the situation where symbols are input sequentially to a linear array of n processors. The systolic algorithm can be modified to take only m + n steps on multicomputers by using the scatter operation.  相似文献   

2.
The data compression based on dictionary techniques works by replacing phrases in the input string with indexes into some dictionary. The dictionary can be static or dynamic. In static dictionary compression, the dictionary contains a predetermined fixed set of entries. In dynamic dictionary compression, the dictionary changes its entries during compression. We present parallel algorithms for two parsing strategies for static dictionary compression. One is the optimal parsing strategy with dictionaries that have the prefix properly, for which our algorithm requires O(L+log n) time and O(n) processors, where n is the number of symbols in the input string, and L is the maximum length of the dictionary entries, while previous results run in O(L+log n) time using O(n2) processors or in O(L+log2 n) time using O(n) processors. The other is the longest fragment first (LFF) parsing strategy, for which our algorithm requires O(L+log n,) time and O(n log L) processors, while a previous result obtained an O(L log n) time performance on O(n/log n) processors. For both strategies, we derive our parallel algorithms by modifying the on-line algorithms using a pointer doubling technique  相似文献   

3.
We present a parallel recognition algorithm for bipartite-permutation graphs. The algorithm can be executed in O(log n) time on the CRCW PRAM if O(n3/log n) processors are used, or O(log2 n) time on the CREW PRAM if O(n3/log2 n) processors are used. Chen and Yesha (1993) have presented another CRCW PRAM algorithm that takes O(log2n) time if O(n 3) processors are used. Compared with Chen and Yesha's algorithm, our algorithm requires either less time and fewer processors on the same machine model, or fewer processors on a weaker machine model. Our algorithm can also be applied to determine if two bipartite-permutation graphs are isomorphic  相似文献   

4.
Given a graph G=(V, E) with n vertices and m edges, the k-connectivity of G denotes either the k-edge connectivity or the k-vertex connectivity of G. In this paper, we deal with the fully dynamic maintenance of k-connectivity of G in the parallel setting for k=2, 3. We study the problem of maintaining k-edge/vertex connected components of a graph undergoing repeatedly dynamic updates, such as edge insertions and deletions, and answering the query of whether two vertices are included in the same k-edge/vertex connected component. Our major results are the following: (1) An NC algorithm for the 2-edge connectivity problem is proposed, which runs in O(log n log(m/n)) time using O(n3/4) processors per update and query. (2) It is shown that the biconnectivity problem can be solved in O(log2 n ) time using O(nα(2n, n)/logn) processors per update and O(1) time with a single processor per query or in O(log n logn/m) time using O(nα(2n, n)/log n) processors per update and O(logn) time using O(nα(2n, n)/logn) processors per query, where α(.,.) is the inverse of Ackermann's function. (3) An NC algorithm for the triconnectivity problem is also derived, which takes O(log n logn/m+logn log log n/α(3n, n)) time using O(nα(3n, n)/log n) processors per update and O(1) time with a single processor per query. (4) An NC algorithm for the 3-edge connectivity problem is obtained, which has the same time and processor complexities as the algorithm for the triconnectivity problem. To the best of our knowledge, the proposed algorithms are the first NC algorithms for the problems using O(n) processors in contrast to Ω(m) processors for solving them from scratch. In particular, the proposed NC algorithm for the 2-edge connectivity problem uses only O(n3/4) processors. All the proposed algorithms run on a CRCW PRAM  相似文献   

5.
We present four polylog-time parallel algorithms for matching parentheses on an exclusive-read and exclusive-write (EREW) parallel random-access machine (PRAM) model. These algorithms provide new insights into the parentheses-matching problem. The first algorithm has a time complexity of O(log2 n) employing O(n/(log n)) processors for an input string containing n parentheses. Although this algorithm is not cost-optimal, it is extremely simple to implement. The remaining three algorithms, which are based on a different approach, achieve O(log n) time complexity in each case, and represent successive improvements. The second algorithm requires O(n) processors and working space, and it is comparable to the first algorithm in its ease of implementation. The third algorithm uses O(n/(log n)) processors and O(n log n) space. Thus, it is cost-optimal, but uses extra space compared to the standard stack-based sequential algorithm. The last algorithm reduces the space complexity to O(n) while maintaining the same processor and time complexities. Compared to other existing time-optimal algorithms for the parentheses-matching problem that either employ extensive pipelining or use linked lists and comparable data structures, and employ sorting or a linked list ranking algorithm as subroutines, the last two algorithms have two distinct advantages. First, these algorithms employ arrays as their basic data structures, and second, they do not use any pipelining, sorting, or linked list ranking algorithms  相似文献   

6.
We efficiently map a priority queue on the hypercube architecture in a load balanced manner, with no additional communication overhead, and present optimal parallel algorithms for performing insert and deletemin operations. Two implementations for such operations are proposed on the single port hypercube model. In a b-bandwidth, n-item priority queue in which every node contains b items in sorted order, the first implementation achieves optimal speed up of O(min{log n, b log n/log b+log log n}) for inserting b presorted items or deleting b smallest items, where b=O(n1c/) with c>1. In particular, single insertion and deletion operations are cost optimal and require O(log n/p+log p) time using O(log n/log log n) processors. The second implementation is more scalable since it uses a larger number of processors, and attains a “nearly” optimal speedup on the single hypercube. Namely, the insertion of log n presorted items or the deletion of the log n smallest items is accomplished in O(log log n2) time using O(log2 n/log log n) processors. Finally, on the slightly more powerful pipelined hypercube model, the second implementation performs log n operations in O(log log n) time using O(log2 n/log log n) processors, thus achieving an optimal speed up. To the best of our knowledge, our algorithms are the first implementations of b-bandwidth distributed priority queues, which are load balanced and yet guarantee optimal speed ups  相似文献   

7.
A longest common subsequence (LCS) of two strings is a common subsequence of two strings of maximal length. The LCS problem is to find an LCS of two given strings and the length of the LCS (LLCS). In this paper, we present a new linear processor array for solving the LCS problem. The array is based on parallelization of a recent LCS algorithm which consists of two phases, i.e. preprocessing and computation. The computation phase is based on bit-level dynamic programming approach. Implementations of the preprocessing and computation phases are discussed on the same processor array architecture for the LCS problem. Further, we propose a block processor array architecture which reduces the overall communication and time requirements. Finally, we develop a performance model for estimating the performance of the processor array architecture on Pentium processors.  相似文献   

8.
Summary The LCS problem is to determine the longest common subsequence (LCS) of two strings. A new linear-space algorithm to solve the LCS problem is presented. The only other algorithm with linear-space complexity is by Hirschberg and has runtime complexity O(mn). Our algorithm, based on the divide and conquer technique, has runtime complexity O(n(m-p)), where p is the length of the LCS.  相似文献   

9.
Abstract

We design linear time systolic-based parallel algorithms that run on two-dimensional arrays for both computing the length and recovering a longest common subsequence of three given sequences that are appropriate for very large-scale integration (VLSI) implementation. These problems have been qualified to be difficult to be solved in linear time in [14], and our approach, which generalizes the methods used for determining a longest common subsequence of two strings [28,38] to the case of three strings, enables to solve both problems in linear time. Given the three sequences A, B and C of length n, m and l (n ≤ m ≤ l;), we provide an algorithm that computes the length p of their longest common subsequence on a modular I/O bounded one-way two-dimensional array of nm processors in n + 2m + l? 1 time-steps. To compute a longest common subsequence of the three given strings, we show that each processor of the above array requires an O(min{n,p\) local storage to solve the problem in In + 1m + 1 + p — 2 time-steps.  相似文献   

10.
This paper presents new efficient shortest path algorithms to solve single origin shortest path problems (SOSP problems) and multiple origins shortest path problems (MOSP problems) for hierarchically clustered data networks. To solve an SOSP problem for a network with n nodes, the distributed version of our algorithm reaches the time complexity of O(log(n)), which is less than the time complexity of O(log 2 (n)) achieved by the best existing algorithm. To solve an MOSP problem, our algorithm minimizes the needed computation resources, including computation processors and communication links for the computation of each shortest path so that we can achieve massive parallelization. The time complexity of our algorithm for an MOSP problem is O(m log(n)), which is much less than the time complexity of O(M log2 (0)) of the best previous algorithm. Here, M is the number of the shortest paths to be computed and m is a positive number related to the network topology and the distribution of the nodes incurring communications, m is usually much smaller than M. Our experiment shows that m is almost a constant when the network size increases. Accordingly, our algorithm is significantly faster than the best previous algorithms to solve MOSP problems for large data networks  相似文献   

11.
Given two strings A and B of lengths na and nb, respectively, the All-substrings Longest Common Subsequence (ALCS) problem obtains, for any substring B' of B, the length of the longest string that is a subsequence of both A and B'. The sequential algorithm for this problem takes O(na nb) time and O(nb) space. We present a parallel algorithm for the ALCS problem on the Coarse-Grained Multicomputer (BSP/CGM) model with p < √na processors, that takes O(na nb/p) time, O(log p) communication rounds and O(nb √na) space per processor. The proposed algorithm also solves the basic Longest Common Subsequence (LCS) problem that finds the longest string (and not only its length) that is a subsequence of both A and B. To our knowledge, this is the best BSP/CGM algorithm in the literature for the LCS and ALCS problems.  相似文献   

12.
Recurrence formulations for various problems, such as finding an optimal order of matrix multiplication, finding an optimal binary search tree, and optimal triangulation of polygons, assume a similar form. A. Gibbons and W. Rytter (1988) gave a CREW PRAM algorithm to solve such dynamic programming problems. The algorithm uses O(n6/log n) processors and runs in O(log2 n) time. In this article, a modified algorithm is presented that reduces the processor requirement to O(n6/log 5n) while maintaining the same time complexity of O(log2 n)  相似文献   

13.
Recently it has been noticed that for semigroup computations and for selection, rectangular meshes with multiple broadcasting yield faster algorithms than their square counterparts. The contribution of the paper is to provide yet another example of a fundamental problem for which this phenomenon occurs. Specifically, we show that the problem of computing the convex hull of a set of n sorted points in the plane can be solved in O(n1/8 log 3/4) time on a rectangular mesh with multiple broadcasting of size n3/8 log1/4 n×n5/8/log1/4n. The fastest previously known algorithms on a square mesh of size √n×√n run in O(n1/6) time in case the n points are pixels in a binary image, and in O(n1/6log3/2 n) time for sorted points in the plane  相似文献   

14.
Longest common subsequence is a widely used measure to compare strings, in particular in computational biology. Recently, several variants of the longest common subsequence have been introduced to tackle the comparison of genomes. In particular, the Repetition Free Longest Common Subsequence (RFLCS) problem is a variant of the LCS problem that asks for a longest common subsequence of two input strings with no repetition of symbols. In this paper, we investigate the parameterized complexity of RFLCS. First, we show that the problem does not admit a polynomial kernel. Then, we present a randomized FPT algorithm for the RFLCS problem, improving the time complexity of the existent FPT algorithm.  相似文献   

15.
Mäkinen  Ukkonen  Navarro 《Algorithmica》2003,35(4):347-369
We focus on the problem of approximate matching of strings that have been compressed using run-length encoding. Previous studies have concentrated on the problem of computing the longest common subsequence (LCS) between two strings of length m and n , compressed to m' and n' runs. We extend an existing algorithm for the LCS to the Levenshtein distance achieving O(m'n+n'm) complexity. Furthermore, we extend this algorithm to a weighted edit distance model, where the weights of the three basic edit operations can be chosen arbitrarily. This approach also gives an algorithm for approximate searching of a pattern of m letters (m' runs) in a text of n letters (n' runs) in O(mm'n') time. Then we propose improvements for a greedy algorithm for the LCS, and conjecture that the improved algorithm has O(m'n') expected case complexity. Experimental results are provided to support the conjecture.  相似文献   

16.
Summary Efficient algorithms for computing the longest common subsequence (LCS for short) are discussed. O(pn) algorithm and O(p(m-p) log n) algorithm [Hirschberg 1977] seem to be best among previously known algorithms, where p is the length of an LCS and m and n are the lengths of given two strings (mn). There are many applications where the expected length of an LCS is close to m.In this paper, O(n(m-p)) algorithm is presented. When p is close to m (in other words, two given strings are similar), the algorithm presented here runs much faster than previously known algorithms.  相似文献   

17.
New efficient algorithms for the LCS and constrained LCS problems   总被引:1,自引:0,他引:1  
In this paper, we study the classic and well-studied longest common subsequence (LCS) problem and a recent variant of it, namely the constrained LCS (CLCS) problem. In the CLCS problem, the computed LCS must also be a supersequence of a third given string. In this paper, we first present an efficient algorithm for the traditional LCS problem that runs in O(Rloglogn+n) time, where R is the total number of ordered pairs of positions at which the two strings match and n is the length of the two given strings. Then, using this algorithm, we devise an algorithm for the CLCS problem having time complexity O(pRloglogn+n) in the worst case, where p is the length of the third string.  相似文献   

18.
提出2种针对3条源序列的近似LCS算法,近似因子均为1/|?|。其中,线性近似LCS算法的时空复杂度均为 , 为最长源序列的长度,适于解决大规模问题。递归近似LCS算法时空复杂度均为O(nlogn),适于要求高精度问题。同时,这2种算法都能用于解决多序列的LCS和CLCS问题。实验验证了这2种算法的有效性。  相似文献   

19.
We consider the problem of recognizing whether a given binary string of length n is equal (up to rotation) to the input of an anonymous oriented ring of n processors. Previous algorithms for this problem have been ``global' and do not take into account ``local' patterns occurring in the string. In this paper we give new upper and lower bounds on the bit complexity of string recognition. For periodic strings, near optimal bounds are given which depend on the period of the string. For Kolmogorov random strings an optimal algorithm is given. As a consequence, we show that almost all strings can be recognized by communicating Θ (n log n) bits. It is interesting to note that Kolmogorov complexity theory is used in the proof of our upper bound, rather than its traditional application to the proof of lower bounds. Received October 15, 1996, and in revised form June 12, 2000. Online publication October 13, 2000.  相似文献   

20.
The longest common subsequence problem (LCS) and the closest substring problem (CSP) are two models for finding common patterns in strings, and have been studied extensively. Though both LCS and CSP are NP-Hard, they exhibit very different behavior with respect to polynomial time approximation algorithms. While LCS is hard to approximate within n δ for some δ>0, CSP admits a polynomial time approximation scheme. In this paper, we study the longest common rigid subsequence problem (LCRS). This problem shares similarity with both LCS and CSP and has an important application in motif finding in biological sequences. We show that it is NP-hard to approximate LCRS within ratio n δ , for some constant δ>0, where n is the maximum string length. We also show that it is NP-Hard to approximate LCRS within ratio Ω(m), where m is the number of strings.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号