首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Tyrosine-dependent sequence motifs are implicated in sorting membrane proteins to the basolateral domain of Madin-Darby canine kidney (MDCK) cells. We find that these motifs are interpreted differentially in various polarized epithelial cell types. The H, K-ATPase beta subunit, which contains a tyrosine-based motif in its cytoplasmic tail, was expressed in MDCK and LLC-PK1 cells. This protein was restricted to the basolateral membrane in MDCK cells, but was localized to the apical membrane in LLC-PK1 cells. Similarly, HA-Y543, a construct in which a tyrosine-based motif was introduced into the cytoplasmic tail of influenza hemagglutinin, was sorted to the basolateral membrane of MDCK cells and retained at the apical membrane of LLC-PK1 cells. A chimera in which the cytoplasmic tail of the H,K-ATPase beta subunit protein was replaced with the analogous region of the Na,K-ATPase beta subunit polypeptide was localized to both surface domains of MDCK cells. Mutation of tyrosine-20 of the H,K-ATPase beta subunit cytoplasmic sequence to an alanine was sufficient to disrupt basolateral localization of this polypeptide. In contrast, these constructs all remain localized to the apical membrane in LLC-PK1 cells. The FcRII-B2 protein bears a di-leucine motif and is found at the basolateral membrane of both MDCK and LLC-PK1 cells. These results demonstrate that polarized epithelia are able to discriminate between different classes of specifically defined membrane protein sorting signals.  相似文献   

2.
In polarized HepG2 hepatoma cells, sphingolipids are transported to the apical, bile canalicular membrane by two different transport routes, as revealed with fluorescently tagged sphingolipid analogs. One route involves direct, transcytosis-independent transport of Golgi-derived glucosylceramide and sphingomyelin, whereas the other involves basolateral to apical transcytosis of both sphingolipids. We show that these distinct routes display a different sensitivity toward nocodazole and cytochalasin D, implying a specific transport dependence on either microtubules or actin filaments, respectively. Thus, nocodazole strongly inhibited the direct route, whereas sphingolipid transport by transcytosis was hardly affected. Moreover, nocodazole blocked "hyperpolarization," i.e., the enlargement of the apical membrane surface, which is induced by treating cells with dibutyryl-cAMP. By contrast, the transcytotic route but not the direct route was inhibited by cytochalasin D. The actin-dependent step during transcytotic lipid transport probably occurs at an early endocytic event at the basolateral plasma membrane, because total lipid uptake and fluid phase endocytosis of horseradish peroxidase from this membrane were inhibited by cytochalasin D as well. In summary, the results show that the two sphingolipid transport pathways to the apical membrane must have a different requirement for cytoskeletal elements.  相似文献   

3.
Recent evidence suggests that apical and basolateral endocytic pathways in epithelia converge in an apically located, pericentriolar endosomal compartment termed the apical recycling endosome. In this compartment, apically and basolaterally internalized membrane constituents are thought to be sorted for recycling back to their site of origin or for transcytosis to the opposite plasma membrane domain. We report here that in the epithelial cell line Madin-Darby Canine Kidney (MDCK), antibodies to Rab11a label an apical pericentriolar endosomal compartment that is dependent on intact microtubules for its integrity. Furthermore, this compartment is accessible to a membrane-bound marker (dimeric immunoglobulin A [IgA]) internalized from either the apical or basolateral pole, functionally defining it as the apical recycling endosome. We have also examined the role of a closely related epithelial-specific Rab, Rab25, in the regulation of membrane recycling and transcytosis in MDCK cells. When cDNA encoding Rab25 was transfected into MDCK cells, the protein colocalized with Rab11a in subapical vesicles. Rab25 transfection also altered the distribution of Rab11a, causing the coalescence of immunoreactivity into multiple denser vesicular structures not associated with the centrosome. Nevertheless, nocodazole still dispersed these vesicles, and dimeric IgA internalized from either the apical or basolateral membrane was detected in endosomes labeled with antibodies to both Rab11a and Rab25. Overexpression of Rab25 decreased the rate of IgA transcytosis and of apical, but not basolateral, recycling of internalized ligand. Conversely, expression of the dominant-negative Rab25T26N did not alter either apical recycling or transcytosis. These results indicate that both Rab11a and Rab25 associate with the apical recycling system of epithelial cells and suggest that Rab25 may selectively regulate the apical recycling and/or transcytotic pathways.  相似文献   

4.
It has been postulated that membrane traffic in polarized epithelial cells requires both actin filaments and microtubules. We have tested this hypothesis by analyzing the effect of cytochalasin D (cytoD; an actin-disrupting agent), by itself or in combination with nocodazole (a microtubule depolymerizing agent), on postendocytic traffic in Madin-Darby canine kidney cells. CytoD treatment inhibited basolateral to apical transcytosis of IgA in polymeric immunoglobulin receptor-expressing cells by approximately 45%, but had little effect on basolateral recycling of transferrin. Apical recycling of IgA was also inhibited by approximately 20%. Like nocodazole, cytoD acted at an early step in transcytosis, and inhibited translocation of IgA between the basolateral early endosomes and the apical recycling endosome. There was little inhibition of the subsequent release of IgA from the apical recycling endosome of cytoD- or nocodazole-treated cells. Order-of-addition experiments suggest that the cytoD-sensitive step preceded the nocodazole-sensitive step. Treatment with both cytoD and nocodazole inhibited transcytosis 95%. These results suggest that in addition to microtubules, efficient postendocytic traffic in polarized epithelial cells also requires actin filaments.  相似文献   

5.
The influenza A virus M2 integral membrane protein is an ion channel that permits protons to enter virus particles during uncoating of virions in endosomes and also modulates the pH of the trans-Golgi network in virus-infected cells. The M2 protein is a homo-oligomer of 97 residues, and analysis by chemical cross-linking and SDS/PAGE indicates M2 forms a tetramer. However, a higher order molecular form is sometimes observed and, thus, it is necessary to determine the active form of the molecule. This was done by studying the currents of oocytes that expressed mixtures of the wild-type M2 protein (epitope tagged) and the mutant protein M2-V27S, which is resistant to the inhibitor amantadine. The composition of mixed oligomers of the two proteins expressed at the plasma membrane of individual oocytes was quantified after antibody capture of the cell surface expressed molecules and it was found that the subunits mixed freely. When the ratio of wild-type to mutant protein subunits was 0. 85:0.15, the amantadine sensitivity was reduced to 50% and for a ratio of 0.71:0.29 to 20%. These results are consistent with the amantadine-resistant mutant being dominant and the oligomeric state being a tetramer.  相似文献   

6.
Hypercalcemia is frequently associated with a urinary concentrating defect and overt polyuria. The molecular mechanisms underlying this defect are poorly understood. Dysregulation of aquaporin-2 (AQP2), the predominant vasopressin-regulated water channel, is known to be associated with a range of congenital and acquired water balance disorders including nephrogenic diabetes insipidus and states of water retention. This study examines the effect of hypercalcemia on the expression of AQP2 in rat kidney. Rats were treated orally for 7 d with dihydrotachysterol, which produced significant hypercalcemia with a 15 +/- 2% increase in plasma calcium concentration. Immunoblotting and densitometry of membrane fractions revealed a significant decrease in AQP2 expression in kidney inner medulla of hypercalcemic rats to 45.7 +/- 6.8% (n = 11) of control levels (100 +/- 12%, n = 9). A similar reduction in AQP2 expression was seen in cortex (36.9 +/- 4.2% of control levels, n = 6). Urine production increased in parallel, from 11.3 +/- 1.4 to a maximum of 25.3 +/- 1.9 ml/d (P < 0.01), whereas urine osmolality decreased from 2007 +/- 186 mosmol/kg x H2O to 925 +/- 103 mosmol/kg x H2O (P < 0.01). Immunocytochemistry confirmed a decrease in total AQP2 labeling of collecting duct principal cells from kidneys of hypercalcemic rats, and reduced apical labeling. Immunoelectron microscopy demonstrated a significant reduction in AQP2 labeling of the apical plasma membrane, consistent with the development of polyuria. In summary, the results strongly suggest that AQP2 downregulation and reduced apical plasma membrane delivery of AQP2 play important roles in the development of polyuria in association with hypercalcemia.  相似文献   

7.
BACKGROUND: The apical potassium (K+) channels mediate K+ recycling in thick ascending limb (TAL) and K+ secretion in cortical collecting duct (CCD). Recently, the cDNAs for a family of renal K+ channels, ROMK1, -2 and -3, were identified. Based on the biophysical properties and mRNA distribution, it is believed that these ROMK cDNAs encode the apical K+ channels of TAL and CCD. However, the information for cellular and subcellular localization of the ROMK proteins in these tubules is still not available. METHODS: Paraffin or frozen kidney sections from adult Sprague-Dawley rats were stained by polyclonal antibodies against the N- and C-terminal domain of ROMK. Immunoreactive staining was visualized by color development from horseradish peroxidase reaction. Membrane homogenates from kidney were analyzed by Western blot analysis. RESULTS: The polyclonal antibodies against cytoplasmic epitope of ROMK recognized a approximately 42 kD protein in the membrane homogenates from kidney, but not from liver. Staining by immunocytochemistry revealed that ROMK channels were localized to the apical membranes of the distal nephron in cortex and outer medulla, including thick ascending limb and collecting tubule. ROMK staining was absent in glomerulus, proximal tubule and inner medulla. Double staining of the tissue section with both ROMK-specific and H+-ATPase-specific antibodies revealed labeling of ROMK in the principal cells of the collecting tubules. CONCLUSIONS: These results further strengthen the idea that ROMK channels play important roles in the recycling of K+ in TAL and the secretion of K+ in CCD.  相似文献   

8.
The mechanism by which cAMP stimulates cystic fibrosis transmembrane conductance regulator (CFTR)-mediated chloride (Cl-) secretion is cell type-specific. By using Madin-Darby canine kidney (MDCK) type I epithelial cells as a model, we tested the hypothesis that cAMP stimulates Cl- secretion by stimulating CFTR Cl- channel trafficking from an intracellular pool to the apical plasma membrane. To this end, we generated a green fluorescent protein (GFP)-CFTR expression vector in which GFP was linked to the N terminus of CFTR. GFP did not alter CFTR function in whole cell patch-clamp or planar lipid bilayer experiments. In stably transfected MDCK type I cells, GFP-CFTR localization was substratum-dependent. In cells grown on glass coverslips, GFP-CFTR was polarized to the basolateral membrane, whereas in cells grown on permeable supports, GFP-CFTR was polarized to the apical membrane. Quantitative confocal fluorescence microscopy and surface biotinylation experiments demonstrated that cAMP did not stimulate detectable GFP-CFTR translocation from an intracellular pool to the apical membrane or regulate GFP-CFTR endocytosis. Disruption of the microtubular cytoskeleton with colchicine did not affect cAMP-stimulated Cl- secretion or GFP-CFTR expression in the apical membrane. We conclude that cAMP stimulates CFTR-mediated Cl- secretion in MDCK type I cells by activating channels resident in the apical plasma membrane.  相似文献   

9.
Accumulated data indicate that endocytosis of the glycosylphosphatidyl-inositol-anchored protein urokinase plasminogen activator receptor (uPAR) depends on binding of the ligand uPA:plasminogen activator inhibitor-1 (PAI-1) and subsequent interaction with internalization receptors of the low-density lipoprotein receptor family, which are internalized through clathrin-coated pits. This interaction is inhibited by receptor-associated protein (RAP). We show that uPAR with bound uPA:PAI-1 is capable of entering cells in a clathrin-independent process. First, HeLaK44A cells expressing mutant dynamin efficiently internalized uPA:PAI-1 under conditions in which transferrin endocytosis was blocked. Second, in polarized Madin-Darby canine kidney (MDCK) cells, which expressed human uPAR apically, the low basal rate of uPAR ligand endocytosis, which could not be inhibited by RAP, was increased by forskolin or phorbol ester (phorbol 12-myristate 13-acetate), which selectively up-regulate clathrin-independent endocytosis from the apical domain of epithelial cells. Third, in subconfluent nonpolarized MDCK cells, endocytosis of uPA:PAI-1 was only decreased marginally by RAP. At the ultrastructural level uPAR was largely excluded from clathrin-coated pits in these cells and localized in invaginated caveolae only in the presence of cross-linking antibodies. Interestingly, a larger fraction of uPAR in nonpolarized relative to polarized MDCK cells was insoluble in Triton X-100 at 0 degreesC, and by surface labeling with biotin we also show that internalized uPAR was mainly detergent insoluble, suggesting a correlation between association with detergent-resistant membrane microdomains and higher degree of clathrin-independent endocytosis. Furthermore, by cryoimmunogold labeling we show that 5-10% of internalized uPAR in nonpolarized, but not polarized, MDCK cells is targeted to lysosomes by a mechanism that is regulated by ligand occupancy.  相似文献   

10.
Intracellular membrane transport is mediated predominantly by vesicles which bud from one compartment and fuse specifically with the next compartment in the pathway, resulting in delivery of cargo. COPI-coated vesicles were first identified as intermediates in intra-Golgi transport and subsequent work has shown that they are also involved in transport between the endoplasmic reticulum and the Golgi complex. The COPI coat components have been characterised in detail at the molecular level and a role for membrane proteins and lipids in membrane recruitment of COPI has been uncovered. However, precisely how these distinct membrane components regulate coat recruitment is still unclear and is currently a matter for debate. Furthermore, it is still not clear at exactly how many transport steps COPI is involved and whether it mediates secretory transport in the anterograde or retrograde direction or both. This review focuses on our understanding of COPI structure and function and describes recent findings on the sites of action of COPI in animal cells.  相似文献   

11.
12.
13.
The water permeability of cell membranes differs by orders of magnitude, and most of this variability reflects the differential expression of aquaporin water channels. We have recently found that the CNS contains a member of the aquaporin family, aquaporin-4 (AQP4). As a prerequisite for understanding the cellular handling of water during neuronal activity, we have investigated the cellular and subcellular expression of AQP4 in the retina and optic nerve where activity-dependent ion fluxes have been studied in detail. In situ hybridization with digoxigenin-labeled riboprobes and immunogold labeling by a sensitive postembedding procedure demonstrated that AQP4 and AQP4 mRNA were restricted to glial cells, including MHller cells in the retina and fibrous astrocytes in the optic nerve. A quantitative immunogold analysis of the MHller cells showed that these cells exhibited three distinct membrane compartments with regard to AQP4 expression. End feet membranes (facing the vitreous body or blood vessels) were 10-15 times more intensely labeled than non-end feet membranes, whereas microvilli were devoid of AQP4. These data suggest that MHller cells play a prominent role in the water handling in the retina and that they direct osmotically driven water flux to the vitreous body and vessels rather than to the subretinal space. Fibrous astrocytes in the optic nerve similarly displayed a differential compartmentation of AQP4. The highest expression of AQP4 occurred in end feet membranes, whereas the membrane domain facing the nodal axolemma was associated with a lower level of immunoreactivity than the rest of the membrane. This arrangement may allow transcellular water redistribution to occur without inducing inappropriate volume changes in the perinodal extracellular space.  相似文献   

14.
The cyclin-dependent kinase inhibitor p27 is a negative regulator of the cell cycle and a potential tumor suppressor gene. Because we had previously demonstrated that loss of p27 protein is associated with aggressive behavior in colorectal adenocarcinomas, we used immunohistochemistry and in situ hybridization to evaluate the potential role of alterations in p27 expression in primary and metastatic colorectal adenocarcinomas. Parallel immunostaining was performed for Ki-67 and p53. We evaluated 13 cases of metachronous and 23 cases of synchronous primary and metastatic colorectal tumor pairs. In the synchronous subgroup (Stage IV tumors), 57% of the primary tumor and metastases pairs did not express p27 protein and the remainder were low expressors. In the metachronous subgroup, 54% of the primary tumors were low expressors and the remainder high expressors of p27 protein. There was a significant reduction in the expression of p27 in the metachronous metastases (mean positive cells: 14.5%) when compared to the corresponding primary tumors (mean positive cells: 41.8%), P = 0.0023. All the primary and metastatic tumors in the metachronous subgroup showed high levels of p27 mRNA expression. There was no association between loss of p27 and either Ki-67 count or p53 expression. Because p27 is known to be up-regulated when epithelial cells are grown in suspension, the down-regulation of p27 in circulating tumor cells may confer the ability to grow in an environment of altered extracellular matrix or intercellular adhesion properties, two situations which may facilitate metastases.  相似文献   

15.
The M2 protein from influenza A virus forms proton-selective channels that are essential to viral function and are the target of the drug amantadine. Cys scanning was used to generate a series of mutants with successive substitutions in the transmembrane segment of the protein, and the mutants were expressed in Xenopus laevis oocytes. The effect of the mutations on reversal potential, ion currents, and amantadine resistance were measured. Fourier analysis revealed a periodicity consistent with a four-stranded coiled coil or helical bundle. A three-dimensional model of this structure suggests a possible mechanism for the proton selectivity of the M2 channel of influenza virus.  相似文献   

16.
A prospective study of conduct disorder (CD) was conducted using 4 annual structured diagnostic interviews of 171 clinic-referred boys, their parents, and their teachers. Only about half of the 65 boys who met criteria for CD in Year 1 met criteria again during the next year, but 88% met criteria for CD again at least once during the next 3 years. For most boys with CD, the number of symptoms fluctuated above and below the diagnostic threshold from year to year but remained relatively high. Lower socioeconomic status, parental antisocial personality disorder (APD), and attention-deficit hyperactivity disorder were significant correlates of CD in Year 1, but the interaction of parental APD and the boy's verbal intelligence predicted the persistence of CD symptoms over time (i.e., only boys without a parent with APD and with above-average verbal intelligence clearly improved).  相似文献   

17.
The search for reliable marker molecules discriminating between human Th1 and Th2 cells identified a gene encoding a novel member of the G protein-coupled leukocyte chemoattractant receptor family, which is selectively expressed in Th2 but not Th1 lineage cells, thereby named CRTH2 (chemoattractant receptor-homologous molecule expressed on Th2 cells). Studies with anti-CRTH2 mAbs demonstrated that CRTH2 was expressed in a small population (0.4-6.5%) of CD4+ T cells in fresh PBMCs of healthy adults, but no remarkable expression was seen in B cells and NK cells. In some cases, CD8+ T cells ( approximately 3.5%) expressed CRTH2. Phenotypes of CD4+ T cells expressing CRTH2 were CD45RA-, CD45RO+, and CD25+, similar to those of Ag-activated effector/memory T cells. Freshly isolated CRTH2+ CD4+ T cells produced Th2- but little or no Th1-type cytokines upon stimulation with PMA and ionomycin. In addition, an allergen-induced proliferative response in fresh PBMCs was significantly and selectively reduced by subtracting CRTH2+ cells. Together, these results indicate that CRTH2 is selectively expressed in vivo in an activated state of Th2 cells including allergen-responsive Th2 cells, suggesting its pivotal roles in ongoing Th2-type immune reactions.  相似文献   

18.
We have investigated the effect of N-acetylcysteine on hemodynamic variables, oxygen delivery (DO2), oxygen consumption (VO2), and oxygen extraction in patients with fulminant hepatic failure using independent methods of determining DO2 and VO2, thereby eliminating the effect of mathematical coupling, which may have biased previous studies. In 11 patients with severe fulminant hepatic failure, we documented the hemodynamic effects of N-acetylcysteine during the first 5 hours of a standard infusion regime and simultaneously measured VO2 using a method based on respiratory gas analysis. We related physiological changes to plasma N-acetylcysteine concentrations, and compared this group with 7 patients who received placebo infusions. A variable hemodynamic response to N-acetylcysteine was observed that did not differ significantly in comparison with the placebo group, and did not correlate with plasma drug concentrations. The most significant relationship observed between DO2 and VO2 in any patient predicted a 13-mL x min(-1) x m(-2) increase in VO2 when DO2 increased by 100 mL x min(-1) x m(-2); in 8 patients, VO2 was independent of DO2 over the range observed. In the group that received N-acetylcysteine, a small (mean 6 [SD 6] mL x min(-1) x m[-2]) increase in VO2 occurred in comparison with baseline after 1 hour of infusion (P < .01), but changes were not significantly different from the placebo group and were not sustained. N-Acetylcysteine infusion did not increase oxygen extraction or result in an improvement in whole-blood lactate levels or base excess during the study period. We conclude that N-acetylcysteine infusion does not result in clinically relevant improvements in global VO2, or in clinical markers of tissue hypoxia in patients with severe fulminant hepatic failure.  相似文献   

19.
Glycosylation has been shown to be important for proper routing and membrane insertion of a number of proteins. In the collecting duct, aquaporin-2 (AQP2) is inserted into the apical membrane after stimulation of vasopressin type-2 receptors and retrieved into an endosomal compartment after withdrawal of vasopressin. The extent of glycosylation of AQP2 in human kidney and urine and the effects of deglycoylation on routing of AQP2 in an AQP2-transfected Madin-Darby canine kidney cell line (clone WT10) were investigated. Semiquantitative immunoblotting of human kidney membranes and urine showed an AQP2 glycosylation of 35 to 45% for medulla, papilla, and urine, with low variation among individuals. The 1-desamino-8-D-arginine vasopressin-induced transcellular osmotic water permeability (Pf) of WT10 cells by a factor of 2.6 +/- 0.2 was reduced to 1.5 +/- 0.1 after pretreatment with the glycosylation inhibitor tunicamycin. However, when WT10 cells were incubated with 8-br-cAMP, the Pf increased by a factor 2.8 +/- 0.2 and by 2.9 +/- 0.2 after prior incubation with tunicamycin. Immunoblot analyses revealed that in WT10 cells, 34% of AQP2 is glycosylated, which was reduced to 2% after tunicamycin treatment. Surface biotinylation and subsequent semiquantitative immunoblotting revealed that stimulation by cAMP increased the level of AQP2 in the apical membrane of WT10 cells 1.5-fold. independent of the presence of tunicamycin. However, in tunicamycin-treated WT10 cells, all AQP2 in the apical membrane was unglycosylated, whereas in untreated cells 30% of AQP2 in the apical membrane was glycosylated. These results prove that glycosylation has no function in the routing of AQP2 in Madin-Darby canine kidney cells.  相似文献   

20.
Quantitative assessment of the agglutination of 51Cr labelled canine cell suspensions to canine kidney cell monolayers has been performed over a range of concanavalin A concentrations. Agglutination was observed with all cell cultures tested, comprising four spontaneous canine melanomas, two canine mammary carcinomas, a benign mammary tumour and a contact-inhibited kidney cell line. The melanomas tested showed strong specific inhibition of concanavalin A agglutination by 10(-2)M alpha-methyl-D-glucopyranoside. Inhibition of agglutination of mammary tumour and kidney cells was weaker and less specific. Agglutination was inhibited at 4degrees C. Reduced agglutination to glutaraldehyde-fixed mono-layers was observed in the case of mammary tumours but was absent when contact-inhibited kidney cells were tested. The specificity of the reaction for transformed cells and the parameters involved are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号