首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
基于图像的不同视觉特征,构造各源图像的视觉显著图,提出一种基于视觉显著图的多尺度图像融合算法低频子带融合规则,构建了一种新的多尺度图像融合方法。结合àtrous小波和非下采样轮廓波变换(Non subsampled contourlet transform,NSCT),对多传感器图像和多聚焦图像的融合实验表明,应用本文方法所得的融合图像,无论是视觉效果还是客观评价得分均优于基于平均法或神经网络选择低频系数的融合方法。  相似文献   

2.
针对前视声呐图像清晰程度不同,局部区域模糊的特点,本文提出一种基于非下采样轮廓波变换的前视声呐图像融合算法。依据图像多尺度分解的理论,对源图像进行非下采样轮廓波变换,得到一系列多尺度子带分解系数;根据图像中清晰目标反射声波能量大、对比度高特点,构建前视声呐图像融合规则,即低频子带采用Gabor能量、高频子带计算局部对比度指导融合规则,提出区域一致性校验准则抑制图像噪声,产生融合图像多尺度子带分解系数,并应用非下采样轮廓波逆变换获得融合图像。声呐图像融合对比实验证明,采用提出方法生成的融合图像在主观视觉和客观指标上均优于其他融合方法。  相似文献   

3.
为进一步提高融合图像的对比度和清晰度,提出一种非下采样剪切波变换(简称NSST变换)与引导滤波相结合的多聚焦图像融合算法.首先,利用NSST变换对多聚焦源图像进行多尺度、多方向分解;然后针对低频子带系数,通过计算局部区域改进拉普拉斯能量和进行加权映射,构建初始融合权重,利用引导滤波修正初始融合权重,提出一种基于局部区域改进拉普拉斯能量和的引导滤波加权融合规则;针对高频子带系数,结合人眼视觉特性,通过计算显著信息、局部区域平均梯度、边缘信息和局部区域改进拉普拉斯能量和来构建初始融合权重,利用引导滤波修正初始融合权重,提出一种基于人眼视觉特征的引导滤波加权融合规则;最后,进行NSST逆变换,获得融合图像. 4组多聚焦源图像的仿真实验结果表明,无论是从主观评价还是客观评价上,与其余4种融合算法相比,本文算法均较好地保留多聚焦源图像的边缘轮廓、细节和纹理等信息,也无细节信息缺失,提高融合图像的对比度和清晰度.  相似文献   

4.
针对传统的基于多尺度变换的红外与可见光图像融合算法的不足,提出一种基于复合分解与直觉模糊集的红外与可见光图像融合方法。采用NSCT将源图像分解为低频子带和高频子带,进一步采用潜在低秩表示模型将低频子带分解为低频基础子带和低频显著子带;针对低频基础子带、低频显著子带和高频子带的特征,采用不同的融合规则,其中,低频基础子带以视觉显著度为权重系数采用加权求和作为融合规则,低频显著子带以绝对值最大为融合规则,高频子带以直觉模糊熵最大选择为融合规则;通过NSCT逆变换得到红外与可见光融合图像。通过对比多组融合图像主、客观评价结果表明,该方法能有效保留边缘信息,保留较多的源图像信息,在视觉质量和客观评价方法优于其他图像融合方法。  相似文献   

5.
针对高光谱多波段图像融合的问题,提出了一种基于小波变换和多通道脉冲耦合神经网络模型的新融合方法。该算法利用小波变换对图像进行多尺度分解,将得到的低频和高频系数分别采用多通道PCNN模型进行非线性融合处理,对低频子带直接利用其点火频率图得到融合结果,对各高频子带则利用点火频率图的直方图矢量重心及偏差计算自适应阈值并进行区域分割,对不同的区域采用不同的融合规则进行融合处理;最后进行小波重构得到融合图像。对OMIS高光谱图像的实验结果表明:所提方法能够有效地融合高光谱多个波段图像信息,且纹理细节信息突出。  相似文献   

6.
结合非下采样轮廓波变换的平移不变性,提出了一种基于视觉显著性的红外与可见光图像融合算法。首先,利用引导滤波器改进显著性检测算法并将其用于红外图像;然后,对红外图像和可见光图像进行非下采样轮廓波变换以得到各自的低频与高频子带;最后,在低频与高频子带的融合中分别采用红外图像显著性指导法与绝对值取大法。实验结果表明,与多种相关算法相比,该算法所得融合图像在突出红外目标的同时还具有丰富的可见光背景信息,具有更好的视觉融合效果和客观质量评价。  相似文献   

7.
为了获取适合人眼观测的高质量红外与可见光融合图像,提出了一种基于视觉显著性指导的红外与可见光图像融合算法。首先,利用改进的流形排序法分别检测红外与可见光图像的视觉显著性区域;然后,采用非下采样轮廓波变换对红外和可见光图像进行多尺度、多方向分解,从而获取各自低频子带和高频子带,并将视觉显著性的检测结果用于指导分配低频子带的融合权重,即依据显著度大小赋予不同的权值,而高频子带的融合则依据局部标准差准则赋值;最后,通过非下采样轮廓波逆变换获得融合图像。实验结果表明:这种算法不仅可以保全可见光图像中的细节信息,而且能够精确地突显出红外目标信息,具有较好的视觉效果, 增强了红外与可见光复合前视系统的识别性能。  相似文献   

8.
为了提高融合后多光谱图像的质量,本文提出一种基于快速非下采样轮廓波变换(FNSCT)与萤火虫优化的自适应脉冲耦合神经网络(PCNN)相结合的图像融合算法。将通过亮度-色度-饱和度(IHS)变换的多光谱图像亮度分量与全色图像分别进行FNSCT变换,获得相应的高低频系数。针对低频系数,采用区域平均能量法进行融合;对于高频子带,为了确定PCNN模型的最优参数,将PCNN算法的链接强度与链接范围自适应化,并利用萤火虫算法优化其余参数,获得更优的PCNN模型,实现高频系数的融合。最终经过FNSCT逆变换和IHS逆变换得到融合结果。实验结果表明:本文提出的算法既提高了图像的空间分辨率又很好地保留了融合图像的光谱信息。  相似文献   

9.
为了提升多源图像融合精度,提出了一种基于图像质量评价参数的非下采样剪切波(NSST)域图像自适应融合方法。利用非下采样剪切波变换对源图像进行多尺度、多方向分解,低频子带图像采用结构相似度与空间频率两种图像评价参数作为系数权值,高频子带图像应用绝对值与邻域平均能量一致性选择的融合策略。应用非下采样剪切波逆变换重构图像。采用多组多源图像进行融合实验,并对融合结果进行了客观评价。实验结果表明:本文方法在主观和客观评价上均优于其他多尺度融合方法,具有更好的融合效果。  相似文献   

10.
多光谱图像与全色图像的融合已被广泛应用于提高后续图像处理效果以满足图像进一步应用的需要,本文提出了一种在非下采样剪切波变换域中基于区域清晰度加权和导向滤波相结合的遥感图像融合方法.利用剪切波变换将多光谱图像的亮度分量与全色图像分别分解为低频子带和高频子带;针对高低频子带的特点分别设计高低频子带融合规则;对融合系数取剪切...  相似文献   

11.
针对红外与可见光图像融合造成的成像边缘存在模糊区域问题,提出一种基于非下采样轮廓波变换(Nonsubsampled Contourlet, NSCT)域平均梯度能量驱动的红外图像(IFR)与可见光图像(VBI)融合算法,首先对IFR和VBI分别进行NSCT变换,得到低频、中频、高频子带系数,低频融合采用平均梯度能量(Average Gradient Energy, AVGE)取最大的方法进行融合,中频融合采用空间频率(Spatial Frequency, STF)取最大值进行融合,高频提出了一种平均梯度能量驱动脉冲耦合神经网络(Average Gradient Energy Pulse Coupled Neural Network, AVGE-PCNN)的融合方法进行融合,采用逆非下采样轮廓波变换(Inverse Nonsubsampled Contourlet Transform, INSCT)得到最终融合图像,实验采用三组不同场景的IFR和VSI图像进行融合处理。通过对比实验证明,提出的融合方法在改善图像边缘模糊方面效果良好,主观评估和客观评价均优于DWT、DTCWT、NSCT算法...  相似文献   

12.
基于小波变换和邻域特征的多聚焦图像融合算法   总被引:1,自引:0,他引:1  
提出了一种基于小波变换和邻域特征的多聚焦图像融合算法。该算法首先采用小波变换对源图像进行多尺度分解,得到低频和高频子图像;然后对低频子图像采用基于邻域归一化梯度的方法得到低频融合系数,对高频子图像采用基于邻域方差的方法得到高频融合系数;最后进行小波重构得到融合图像。采用均方根误差、信息熵以及峰值信噪比等评价标准,将该算法与传统融合方法的融合效果进行了比较。实验结果表明,该算法所得融合图像的效果和质量均有明显提高。  相似文献   

13.
NSCT域内基于自适应PCNN的红外与可见光图像融合方法   总被引:1,自引:0,他引:1  
提出一种在图像的非下采样Contourlet变换(NSCT)域内基于脉冲耦合神经网络(PCNN)的融合方法。首先采用NSCT对严格配准的待融合图像进行多分辨率多方向分解, 得到低频子带和高频方向子带;然后使用各子带系数的空间频率作为PCNN对应神经元的自适应连接强度系数,使用改进的拉普拉斯能量和作为PCNN每个神经元的外部激励,经过PCNN点火过程获得各子带对应的点火映射图,并通过判决选择算子确定融合图像的各子带系数;最后采用NSCT逆变换对低频子带系数和高频方向子带系数进行重构,得到融合图像。使用红外与可见光图像进行仿真实验的结果表明,本文方法优于基于小波变换、NSCT及传统NSCT与PCNN结合的图像融合方法。    相似文献   

14.
针对不同极化SAR图像的融合,提出了一种基于Contourlet变换的自适应窗口图像融合方法.首先对原始图像进行Contourlet变换,将图像分解为一个低频予带和多个不同方向的高频子带.对分解后的低频子带进行邻域能量加权融合,对各方向高频子带采用依据SAR图像斑点噪声特征的变化自适应地调整融合窗口的方法.通过对两极化SAR图像进行融合实验并与小波变换等融合结果比较,表明本文方法融合后的图像在视觉特性以及客观评价统计因子上取得了更好的效果,融合后的图像提供了比原始图像更丰富的信息.  相似文献   

15.
非下采样Contourlet变换域多聚焦图像融合方法   总被引:2,自引:0,他引:2  
针对同一场景的多聚焦图像融合问题,提出基于脉冲耦合神经网络(PCNN)的非下采样Contourlet变换(NSCT)域融合方法.将源图像经过NSCT变换生成的低通子带系数和带通方向子带系数输入PCNN,将各神经元迭代产生的点火频数构成点火映射图.采用接近度函数描述点火映射图邻域特性的关联程度,根据邻域接近度为融合图像选择相应的子带系数,通过NSCT逆变换得到融合结果.实验分析表明,新的融合方法在很大程度上保留了多聚焦图像的清晰区域和特征信息,具有比经典小波变换、Contourlet变换和常规NSCT方法更好的融合性能.  相似文献   

16.
为了提升多源图像融合精度,提出了一种有限离散剪切波(FDST)域结合图像区域客观评价的自适应融合方法。该方法利用有限离散剪切波(FDST)对源图像进行多尺度、多方向分解,低频子带图像采用梯度信息相关性因子作为系数权值,高频子带图像应用绝对值与区域标准差一致性选择的融合策略。应用有限离散剪切波逆变换重构图像,采用多组多源图像进行融合试验,并对融合结果进行了客观评价。试验结果表明,本文提出的融合方法在主观和客观评价上均优于其他多尺度分解(MSD)融合方法。  相似文献   

17.
针对医学诊断实时传输需求,提出一种基于压缩感知的医学图像融合研究算法.该算法采用基于压缩感知的融合方法,对非下采样轮廓波变换(NSCT)分解得到的高频子带用随机高斯矩阵分别进行测量,利用正交匹配追踪法重建各高频子带系数,对得到的高频部分和低频部分进行逆变换得到融合图像.通过对CT与PET肝脏医学图像的仿真实验,该算法可以增加多模态医学图像互补信息,并能较好地提高医学图像融合的清晰度.比较融合评价指标,证实本算法在保证融合质量的同时有效提高了运算效率,有利于满足医学诊断实时传输的应用需求.  相似文献   

18.
为提高图像融合质量,较好地保留原始图像的光谱特性,避免融合图像光谱退化,提出非下采样Contourlet变换耦合区域特性多聚焦图像融合算法。采用非下采样Contourlet变换(nonsubsampled contourlet transform,NSCT)对图像进行多尺度精细分解,获取图像多层次分解子带;利用分割块区域能量函数,构造区域能量度量模型,获取区域能量相似系数,判定低频子带对应的加权系数,完成图像低频子带的融合。根据分割高频子带时形成的行列特征,形成区域锐度模型,获取高频子带分割块中的区域锐度值,利用该锐度值建立分割块判定函数,完成高频子带的融合。最后,采用非下采样Contourlet变换的逆变换得到融合图像。结果表明,与已有图像融合算法相比,本文图像融合算法融合质量更好。  相似文献   

19.
非降采样Contourlet域方向区域多聚焦图像融合算法   总被引:3,自引:2,他引:1  
提出了一种基于方向区域特性的非降采样Contourlet域多聚焦图像融合算法。算法将图像进行非降采样Contourlet变换为不同方向的高低频子带,低频子带和高频子带中分别采用方向区域的方差匹配度和能量作为融合规则,其中方向区域与当前子带分解方向保持一致,最后,通过反变换得到融合图像。实验结果表明,本文提出的方向区域方法能够更好地体现二维图像中的曲线或直线状边缘特征。将现有的融合算法和本文所提算法进行了主观和客观的对比,结果表明,基于非降采样Contourlet变换的方向区域特性的图像融合算法是一种有效可行的图像融合算法。  相似文献   

20.
传统的红外与可见光图像融合方法存在着对比度不高、背景细节信息保留不理想的问题,为解决此类问题,提出了一种非下采样剪切波变换(Non-subsampled Shearlet Transform,NSST)结合自适应脉冲耦合神经网络(Pulse Coupled Neural Network,PCNN)的方法.利用NSST将源图像多尺度地分解成低频子带和高频子带;针对图像低频子带融合,采用自适应模糊逻辑加权平均融合规则;对于图像高频子带融合,采用自适应PCNN的算法;最后,通过NSST逆变换得到融合后图像.实验结果表明,相比于传统图像融合方法,本方法在信息熵、空间频率、平均梯度、互信息和交叉熵等多个客观评价指标上至少分别提高了1.54%、4.52%、3.52%、9.14%、0.12%,提高了融合图像的对比度,保留了背景细节信息,取得更好的融合效果.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号