共查询到19条相似文献,搜索用时 62 毫秒
1.
2.
豆渣多糖硫酸酯化工艺条件优化及其抗氧化活性 总被引:1,自引:0,他引:1
以豆渣为原料采用氯磺酸-吡啶法制备硫酸酯化豆渣多糖。以取代度为指标,采用单因素及正交试验对硫酸化试剂比例、硫酸酯化试剂与多糖溶液比例、反应温度及反应时间进行优化;采用邻二氮菲-H2O2法及比色法研究硫酸化豆渣多糖对羟基自由基及DPPH.的清除作用。结果表明,最佳酯化条件为:酯化试剂比例(氯磺酸:吡啶)1∶3,酯化试剂:多糖溶液(体积比)4∶3,反应温度80℃,反应时间2.5 h。在此条件下,豆渣多糖取代度达到2.15。硫酸酯化豆渣多糖对羟基自由基及DPPH.的清除作用比未酯化前豆渣多糖有明显的提高。 相似文献
3.
4.
5.
采用水提醇沉法提取裂褶菌多糖,用磺酰化法对其进行硫酸酯化,经红外光谱定性分析,硫酸钡比浊法定量计算得出硫酸基的含量。采用邻二氮菲-Fe~(2+)氧化法测定裂褶菌多糖和裂褶菌硫酸酯对羟自由基的清除作用。结果表明:硫酸基含量为13.9%,硫酸基取代度(DS)为1.26时,硫酸酯化裂褶菌多糖的抗氧化活性比裂褶菌多糖增加2.6倍。硫酸酯化修饰能提高裂褶菌多糖的抗氧化活性。 相似文献
6.
目的:对油菜花粉多糖进行硫酸酯化,研究体外抗氧化活性。方法:采用浓硫酸法分别在0 ℃和10 ℃条件下对油菜花粉多糖(rape pollen polysaccharides,RPP)进行硫酸酯化修饰,并对其清除羟自由基(·OH)、超氧阴离子自由基(O2-·)和1,1-二苯基-2-三硝基苯肼(1,1-diphenyl-2-picrylhydrazyl,DPPH)自由基的能力进行了研究。结果:酯化得到取代度分别为0.89和1.36的2 个改性产物(S-RPP1和S-RPP2),RPP、S-RPP1和S-RPP2表现出不同程度的抗氧化活性。总的自由基清除能力大小为S-RPP1>S-RPP2>RPP。结论:硫酸化修饰能提高油菜花粉多糖的体外抗氧化活性。 相似文献
7.
8.
采用氯磺酸-吡啶法,对南瓜粗多糖和分离得到的南瓜AP1多糖进行硫酸酯化;采用邻二氮菲—金属铁离子—H2O2体系和邻苯三酚自氧化法,测定南瓜多糖对羟自由基和超氧阴离子自由基的清除作用。结果表明,四种南瓜多糖均能有效清除羟基自由基,并随着浓度的增加,清除作用加强,且水提南瓜粗多糖对羟基自由基清除作用显著高于其它三种多糖。南瓜粗多糖和南瓜AP1多糖对超氧阴离子自由基的清除作用不明显,经硫酸酯化后的多糖能有效清除超氧阴离子自由基,并呈量效关系。实验结果表明,硫酸酯化南瓜多糖具有抗氧化性。 相似文献
9.
南瓜多糖硫酸酯化衍生物的制备及抗氧化研究 总被引:2,自引:1,他引:2
采用氯磺酸一吡啶法,对南瓜粗多糖和分离得到的南瓜AP1多糖进行硫酸酯化;采用邻二氮菲-金属铁离子-H2O2体系和邻苯三酚自氧化法,测定南瓜多糖对羟自由基和超氧阴离子自由基的清除作用.结果表明,四种南瓜多糖均能有效清除羟基自由基,并随着浓度的增加,清除作用加强,且水提南瓜粗多糖对羟基自由基清除作用显著高于其它三种多糖.南瓜粗多糖和南瓜AP1多糖对超氧阴离子自由基的清除作用不明显,经硫酸酯化后的多糖能有效清除超氧阴离子自由基,并呈量效关系.实验结果表明,硫酸酯化南瓜多糖具有抗氧化性. 相似文献
10.
11.
香菇柄多糖乙酰化修饰及其抗氧化活性 总被引:1,自引:0,他引:1
以香菇柄为原料,采用乙酸酐法制备乙酰化香菇柄多糖,考察不同乙酸酐用量在NaOH体系和甲酰胺体系中对多糖乙酰化修饰取代度以及多糖结构特性的影响,并对多糖及其乙酰化多糖的抗氧化活性进行评价。结果表明,在NaOH体系和甲酰胺体系中,香菇柄多糖乙酰化修饰取代度与乙酸酐用量均呈正相关,在乙酸酐用量为5 mL时,取代度分别为0.31和0.14。红外光谱表明,乙酰化修饰香菇柄多糖除具有多糖特征峰外,还出现了乙酰基的特征吸收峰,说明香菇柄多糖的乙酰化修饰成功。NaOH体系乙酰化修饰后多糖仍然具有三螺旋结构,而甲酰胺体系乙酰化修饰后多糖的三螺旋结构被破坏。抗氧化结果表明,香菇柄多糖乙酰化修饰前后均具有一定的抗氧化能力,并呈现一定的量效关系,且NaOH体系乙酰化多糖的抗氧化活性强于香菇柄多糖和甲酰胺体系乙酰化多糖,宜采用NaOH体系对香菇柄多糖进行乙酰化修饰。 相似文献
12.
13.
14.
16.
《中国食品添加剂》2016,(11)
以百蕊草全草为原料,碱性热水提取获得百蕊草多糖(TP),并以脱色率与多糖保留率为指标确定百蕊草多糖最佳脱色条件;以脱蛋白率与多糖保留率为指标,对Sevage法、TCA法及HCl法3种脱蛋白方法进行比较选择较好的脱蛋白方法,确定百蕊草多糖过氧化氢脱色的最佳条件是脱色温度60℃,p H 8.5,过氧化氢6%,脱色2h;TCA法为3种方法中较好的脱蛋白方法。将百蕊草多糖经DEAE-纤维素柱分离得到三个多糖组分(TP-1,TP-3,TP-W,三个组分含量的大小顺序为TP-WTP-1TP-3),进一步测定三个组分的体外抗氧化活性,结果显示:百蕊草总多糖及三种多糖组分的还原能力大小为:TPTP-3TP-1TP-W;百蕊草总多糖及三种多糖组分均具有清除DPPH自由基的能力,清除能力为:TPTP-3TP-WTP-1。 相似文献
17.
目的:为咖啡中多糖成分的研究和天然活性多糖的开发提供基础数据。方法:研究了云南小粒咖啡生豆多糖(GBP)的水提工艺和抗氧化活性。应用响应面法对咖啡生豆多糖提取工艺进行优化;运用傅里叶变换红外光谱(FT-IR)和扫描电镜(SEM)共同鉴定和表征咖啡生豆多糖的结构特点。采用DPPH自由基、ABTS自由基清除试验和FRAP法评估咖啡生豆多糖体外抗氧化能力。结果:咖啡生豆多糖水提法的最佳工艺条件:提取温度59℃、提取时间45 min、液料比(V水∶m咖啡生豆)21∶1 (mL/g)、浓缩体积1/8及乙醇体积分数75%,该条件下咖啡生豆多糖得率达9.56%。多糖样品经红外光谱和电镜扫描显示咖啡生豆是表面呈不规则的孔状结构的多糖。咖啡生豆多糖对DPPH自由基、ABTS自由基清除能力分别为2.32 mg/mL(IC50)、0.011 mmol Trolox/g GBP,铁还原能力为0.95 mmol Fe2+/g GBP。结论:咖啡生豆多糖是具有抗氧化活性的不规则孔状结构多糖,具有进一步研究和开发的价值。 相似文献
18.
采用超声辅助水提醇沉法提取白蜡多年卧孔菌(Perenniporia fraxinea)子实体与菌丝体多糖,利用单因素试验结合Box-Behnken响应面法优化子实体与菌丝体多糖提取工艺参数,并测定其DPPH·、ABTS+·清除能力。结果表明,子实体多糖的最佳提取工艺条件为:料液比1∶60(g∶mL)、提取时间76 min和超声时间16 min,在此优化条件下,子实体多糖提取率为4.39%;菌丝体多糖的最佳提取工艺条件为:料液比1∶30(g∶mL)、提取时间101 min和超声时间16 min,在此优化条件下,菌丝体多糖提取率为6.33%。当子实体和菌丝体多糖质量浓度为2.0 mg/mL时,子实体对DPPH·、ABTS+·清除率分别为45.67%和72.89%,菌丝体多糖对DPPH·、ABTS+·的清除率分别为51.67%和75.83%。子实体和菌丝体多糖能降低植物油过氧化值(POV),表明白蜡多年卧孔菌多糖具有一定的抗油脂氧化的能力。 相似文献
19.
采用单因素试验和正交试验对核桃壳多糖的超声波辅助纤维素酶提取工艺条件进行优化,并对核桃壳多糖的抗氧化活性进行研究。结果表明,超声波辅助纤维素酶提取核桃壳多糖的最优工艺条件为:料液比1∶20,纤维素酶添加量1. 75%,提取温度45℃,提取时间90 min,超声波功率750W。在最优条件下,核桃壳多糖提取率为2. 20%。核桃壳多糖对DPPH自由基、羟基自由基、超氧阴离子自由基均表现出较好的清除能力,且在一定范围内对三者的清除作用呈现良好的量效关系。 相似文献