首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
碳源对γ-聚谷氨酸发酵的影响   总被引:2,自引:0,他引:2  
以γ-聚谷氨酸生产菌yt102为供试菌株,研究了碳源对γ-聚谷氨酸发酵的影响.首先通过摇瓶实验确定发酵的最佳碳源为葡萄糖和柠檬酸,二者按一定的比例混合更有利于聚谷氨酸的产生,进一步利用10L发酵罐补料分批发酵确定碳源的最佳用量为40g/L,继续优化培养条件,确定采用溶氧控制的脉冲补料方式可有效延续γ-聚谷氨酸的合成.在最优发酵条件下,通过10L发酵罐补料分批发酵50h,r-聚谷氨酸产量可达34.5g/L.  相似文献   

2.
补料发酵枯草芽孢杆菌合成γ-聚谷氨酸的研究   总被引:2,自引:0,他引:2  
吕萌  梁金钟  王风青 《食品科学》2011,32(23):225-228
在5L自动发酵罐中,通过分批发酵和补料分批发酵,对枯草芽孢杆菌(Bacillus subtilis HCUL-B-115)生物合成γ-聚谷氨酸(γ-PGA)进行研究,以达到高产的目的。结果表明:在分批发酵过程中,在通入空气条件下搅拌转速由150r/min提高至250r/min,发酵结束时γ-PGA产量从11.30g/L提高到30.86g/L;在补料分批发酵过程中,在通入空气条件下,搅拌转速采用250r/min,当糖质量浓度在20g/L以下时,每次补加50mL 糖质量浓度200g/L的玉米糖化液则菌体大量生长,γ-PGA产量提高到52.20g/L。  相似文献   

3.
为促进齐整小核菌(Sclerotium rolfsii WSH-G01)利用葡萄糖生产硬葡聚糖,在确定了最优搅拌转速的基础上,研究了2种补料方式对菌体生物量和多糖产量的影响。确定了控制搅拌转速400 r/min;发酵40 h时开始,恒速流加补料葡萄糖总浓度400 g/L,流速6 g/(L·h),补料维持时间32 h的补料策略是最佳补料调控策略。结果表明,此种补料方式在齐整小核菌发酵72 h时获得最高硬葡聚糖产量32. 62 g/L,生物量22. 36 g/L,生产强度0. 45 g/(L·h),底物利用率28%。多糖产量较另一种补料方式提高了15%,较分批发酵提高了76. 5%。  相似文献   

4.
在7.5 L发酵罐上考察了Paenibacillus polymyxa ZJ-9混合发酵菊粉和葡萄糖合成R,R-2,3-丁二醇的工艺条件。选用菊芋菊粉粗提液为发酵前期底物,分析比较不同初始菊粉浓度下的细胞比生长速率(μ)和产物比合成速率(qp),进而研究了补糖种类和不同补料方式对合成R,R-2,3-丁二醇的影响。结果表明,初始菊粉75.0g/L,当发酵到24 h、31 h时,分别添加15.0 g/L的葡萄糖,发酵效果最佳,44 h时,产物产量达到最高值47.8 g/L,与分批发酵相比,糖转化率由原来的34.9%提高到45.5%,生产强度由原来的0.70 g/(L·h)提高到1.09 g/(L·h),并且副产物乙偶姻、残糖浓度相对较低。  相似文献   

5.
对缺陷短波单胞菌(Brevndimonas diminut)JNPP-NSS产L-脯氨酸的补料分批发酵条件进行了研究。结果表明,发酵初始添加50 g/L前体物质谷氨酸,以最适初始葡萄糖浓度100 g/L,于35 h以3.0 g/(L.h)的流速补加葡萄糖,使总糖浓度达120 g/L的补碳方式,L-脯氨酸的合成浓度有所提高。发酵结束,L-脯氨酸的终浓度提高到54.40 g/L,底物葡萄糖对L-脯氨酸的转化率达到0.45 g/g。  相似文献   

6.
以玉米秸秆预处理以及酶水解得到的还原糖作为碳源发酵产γ-聚谷氨酸(γ-PGA),分别探究了葡萄糖、木糖、L-谷氨酸钠一水合物和金属离子对B.subtilisCGMCC1250生长以及γ-PGA生产的影响,在摇瓶中优化培养基组分,并进行发酵罐放大操作。结果表明:玉米秸秆经过稀碱预处理以及复合酶水解后,得到的混合糖质量浓度为(76.3±5.7)g/L,其主要成分是葡萄糖和木糖,两者比例为2.19∶1;在配制发酵培养基时添加40g/L的L-谷氨酸钠一水合物,及ZnSO_4·7H_2O0.29g/L、MnSO_4·7H_2O0.05g/L、FeCl_3·6H_2O0.11g/L,摇瓶发酵可得到产量为(20.5±2.70)g/L的γ-PGA;在3L发酵罐实验中采用补料分批发酵的方式生产可以提高产物产量,得到产量为25.6g/L的γ-PGA。  相似文献   

7.
葡萄糖对光滑球拟酵母发酵生产丙酮酸的影响   总被引:1,自引:0,他引:1       下载免费PDF全文
在30L发酵罐中研究了初始葡萄糖质量浓度和补料方式对光滑球拟酵母WSH-IP303发酵生产丙酮酸的影响.实验确定116.4g/L左右是较为适宜的初始葡萄糖质量浓度,发酵58h时丙酮酸质量浓度和产率分别为58.0g/L和0.516g/g.采用初始葡萄糖质量浓度为53.4g/L,发酵24h分批补料至葡萄糖总质量浓度为115g/L的培养方式,发酵64h时丙酮酸质量浓度和产率分别为60.2g/L和0.559g/g;采用初始葡萄糖质量浓度为62.6g/L,发酵24h开始连续补料至葡萄糖总质量浓度为115g/L的培养方式,发酵72h时丙酮酸质量浓度和产率分别为63.3g/L和0.586g/g,与葡萄糖总质量浓度相似(115g/L)的分批发酵相比,丙酮酸产量分别提高了3.8%和9.1%.实验结果表明适宜的初始葡萄糖质量浓度能促进光滑球拟酵母发酵生产丙酮酸;尽管葡萄糖补料培养可适度提高丙酮酸的产量及产率,但生产强度却有所下降.  相似文献   

8.
为提高微生物发酵生产γ-聚谷氨酸(γ-PGA)的产量,采用枯草芽孢杆菌发酵制备γ-聚谷氨酸,并通过单因子试验及正交试验分析,得到枯草芽孢杆菌发酵生产γ-聚谷氨酸的最佳营养条件为:40g/L葡萄糖、5g/L酵母膏、30g/L谷氨酸钠、3g/L NH4Cl、2g/L K2HPO4、0.25g/L MgSO4:最佳培养条件为:接种量2%,装液量40mL(250ml三角瓶),培养温度37℃,摇床转速200r/min,pH值7.0,发酵时间48h,此时γ-聚谷氨酸的产量最高,达到20.15g/L.纯化后产物经纸层析及红外光谱检测,初步确定为γ-聚谷氨酸.  相似文献   

9.
以右旋糖酐发酵废液为原料利用琥珀酸放线杆菌发酵生产丁二酸,在比较不同糖浓度废液对发酵产酸影响的基础上,通过Plackett-Burman试验筛选出对摇瓶发酵产丁二酸的主要影响因素Na H2PO4·2H2O,并用单因素试验确定其最适质量浓度为2.8 g/L。在3 L发酵罐上进行分批发酵和补料分批发酵,以60 g/L初糖质量浓度的右旋糖酐发酵废液为碳源,分批发酵46.8 h产丁二酸40.5 g/L;采用30 g/L葡萄糖为起始发酵培养基的碳源,后续补加浓缩右旋糖酐发酵废液的方式进行补料分批发酵,丁二酸质量浓度达到55.0 g/L,生产强度1 g/(L·h),糖酸转化率为0.83 g/g。结果表明:以右旋糖酐发酵废液为原料发酵生产丁二酸,为解决废液处理排放提供了新途径,具有良好的应用前景。  相似文献   

10.
发酵过程流加L-谷氨酸提高ε-聚赖氨酸的产量   总被引:1,自引:0,他引:1  
为了提高Streptomyces sp.M-Z18合成ε-聚赖氨酸(ε-PL)能力,在考察L-谷氨酸添加浓度和添加时机基础上,提出发酵过程中流加L-谷氨酸的策略。结合甘油补料-分批发酵方式,该策略实现174 h内ε-PL发酵产量和产率分别达到31.65 g/L和4.36 g/(L·d),较原发酵工艺分别提高49.2%和43.9%。实验结果表明,发酵过程流加L-谷氨酸是提高ε-PL发酵水平的有效策略之一。  相似文献   

11.
细菌纤维素/γ-聚谷氨酸复合膜发酵条件的优化   总被引:1,自引:0,他引:1  
在发酵培养基中添加γ-聚谷氨酸(γ-PGA),可以制备具有更优性能的细菌纤维素(BC)复合膜.采用响应面分析法优化细菌纤维素/γ-聚谷氨酸复合膜发酵生产工艺,首先通过Plackctt-Burman试验设计对影响复合膜发酵生产的8个因素进行筛选,得到3个关键影响因子:聚谷氨酸添加浓度,pH和γ-聚谷氨酸的添加时间;然后用最陡爬坡试验逼近响应值的最大区域;最后通过Box-Behnken设计及响应曲面分析确定了各考察因子的最佳取值:葡萄糖25g/L,柠檬酸6g/L,Na2HPO42g/L,γ-聚谷氨酸1.04g/L,γ-聚谷氨酸的添加时间4h,发酵初始pH5.0,温度30℃,发酵周期7d.在优化条件下复合膜的湿重达到61.07g/100mL培养基试验值与预测值误差为-3.05%,较初始培养基复合膜产量提高9 1.32%.  相似文献   

12.
γ-聚谷氨酸(γ-polyglutamic acid,γ-PGA)是一种应用于食品、农业、医药等领域的生物聚合物。在不补料发酵γ-PGA过程中,存在因培养基中碳源、氮源不足导致菌体生长发育和γ-PGA合成受限的情况。为实现γ-PGA高产,采用分批补料发酵方式补充菌体生长代谢所需的碳源和氮源,在5 L发酵罐中进行γ-PGA分批补料发酵优化,并在200 L发酵罐进行放大验证。结果表明:当培养基中葡萄糖含量低于5 g/L、氨氮浓度低于0.5 g/L时开始流加补料,持续补料12 h将培养基中葡萄糖浓度维持在5 g/L~15 g/L,氨氮浓度维持在0.5 g/L~1.0 g/L。与不补料发酵相比,这一优化使得菌种指数生长期延长了6 h,生物量(OD660)达到了0.62,提升了39.01%,谷氨酸含量降至16 g/L,谷氨酸利用率提升了38.47%,γ-PGA生产强度和产量分别为15.69 g/(L·d)、(47.09±0.82)g/L,均提高了38.45%,为γ-PGA工业化生产提供了技术支撑。  相似文献   

13.
在5 L发酵罐上对Bacillus mucilaginosus SM-01发酵产胞外多糖的发酵工艺进行研究。通过分析分批发酵时不同初始葡萄糖浓度对菌体生长及多糖合成的影响,选取60 g/L为最适初始葡萄糖浓度。进一步研究初始葡萄糖浓度为30 g/L时不同补料方式对产糖的影响,结果表明分批补料为最适补料方式。采用分批补糖发酵工艺,即初始葡萄糖浓度为30 g/L,发酵后期分批次补加剩余30 g/L葡萄糖,胶质芽孢杆菌胞外多糖的浓度可达到38.62 g/L,较分批发酵提高36.8%,葡萄糖转化率由47.0%提高至64.4%。  相似文献   

14.
采用亚甲基蓝还原法研究了酒精分批发酵过程中酵母活力,以确定最佳补料时间,旨在为木薯等淀粉质原料的补料发酵提供理论依据。通过不同初总糖浓度分批发酵试验确定最佳初总糖浓度,然后于分批发酵(初糖240 g/L)主发酵期不同时间点(6、8、10、12、14、16、18 h)取样进行亚甲基蓝还原试验,得出发酵液酵母活力最强的时间点,最后进行酒精分批补料发酵验证试验。结果表明:发酵液中酵母细胞还原亚甲基蓝的能力最大(亚甲基蓝脱色斜率最强)在10 h左右,此时补料发酵效果最好,乙醇浓度、乙醇产率和总糖发酵效率均达到最高值,分别为152.28±2.37 g/L,2.46±0.04 g/(L·h)和89.84%。说明通过亚甲基蓝还原试验评估酒精发酵过程酵母活力并作为补料时间指标是有效可行的。  相似文献   

15.
在恒定pH值条件下,利用同型乙酸菌热醋酸梭状芽胞杆菌(Clostridium thermoaceticum)进行葡萄糖分批发酵、补料分批发酵和木薯粉发酵醋酸的初步研究.最适发酵葡萄糖模式:补糖的同时加入3倍量的氮源和微量元素补料分批发酵.醋酸产量40.2g/L,葡萄糖利用率98%,葡萄糖转化率0.82g/g,发酵时间为216h.结合葡萄糖发酵特点和木薯粉酶解条件摸索出木薯粉发酵条件:木薯液化后直接加入适量的糖化酶进行发酵并在发酵过程中补加适量糖化酶使醪液中葡萄糖浓度保持在一定范围内.醋酸产量47.3g/L,葡萄糖利用率94.75%,葡萄糖转化率0.89g/g,发酵时间192h.不添加过量的氮源和微量元素同时省略了糖化工段,底物转化率提高时间缩短,是比较理想的发酵模式.  相似文献   

16.
补料分批发酵生产谷胱甘肽的研究   总被引:2,自引:0,他引:2  
潘亚磊  贺小贤  陈珊 《食品科学》2010,31(1):177-180
考察5L 发酵罐中分批补加葡萄糖对发酵生产谷胱甘肽(GSH)的影响。采用20g/L 初糖质量浓度,在发酵12h 至27h 每隔3h 分别补加22、24、24、24、24g/L 和22g/L 葡萄糖,可以使酿酒酵母在发酵33h 时GSH 质量浓度达到72.49mg/L,细胞干质量浓度达到28.52g/L,分别为初糖20g/L 分批培养方式的2.86 倍和4.93 倍。补料分批发酵可以明显促进酿酒酵母生长和提高GSH 的合成。  相似文献   

17.
为提高ε-聚赖氨酸(ε-PL)合成能力,考察了柠檬酸对Streptomyces sp.M-Z18菌体生长和ε-PL合成的影响。研究发现,柠檬酸作为辅助能量物质,对ε-PL发酵过程影响显著。通过对柠檬酸添加时间、添加量和pH值的优化,确定了最佳柠檬酸添加方式,结合补料-分批发酵工艺,显著提高了ε-PL的产量。实验结果表明,在5L发酵罐中,维持pH为3.8,初始柠檬酸添加量为20 g/L时,分批发酵ε-PL的产量达到9.50 g/L,产率达到4.40 g/(L.d),较未添加柠檬酸发酵分别提高了46.4%和48.1%。采用添加柠檬酸的补料-分批发酵工艺,发酵168 h后ε-PL的产量达到22.89 g/L,是分批发酵的2.41倍。  相似文献   

18.
以酪丁酸梭菌为出发菌株,葡萄糖为底物进行批次和补料发酵生产丁酸。基于5 L通用发酵罐和纤维床生物反应器(FBB)发酵生产丁酸的研究基础,在5 000 L体系纤维床上进行丁酸发酵的中试规模放大。5L通用发酵罐发酵体系中,固定化批次发酵的平均糖酸转化率为0.47 g/g,丁酸生产强度为0.82 g/(L·h),分别比游离发酵提高了31%和134%。补料发酵中,丁酸浓度达52.8 g/L,比游离补料发酵提高了46%。在纤维床中试规模放大研究中,批次发酵的平均糖酸转化率为0.48 g/g,丁酸生产强度为0.63 g/(L·h),比游离发酵分别提高了37%和67%。补料发酵的丁酸浓度为51.63 g/L,与游离发酵相比提高了40%。结果表明,与实验室规模相比,纤维床反应器能够放大到1 000倍,能够保持较高的丁酸发酵水平和生产效率。  相似文献   

19.
重组大肠杆菌利用不同培养基发酵产琥珀酸的研究   总被引:1,自引:0,他引:1  
微生物发酵法生产琥珀酸具有广阔的应用前景,实验针对实验室构建的工程菌Escherichia coli WS100(△ldhA、△adhE、△pflB、△poxB、△ackA)在不同培养基中进行厌氧发酵,考察其发酵特性.分别采用NBS培养基和玉米浆培养基,在含4L发酵液的发酵罐中进行补料-分批发酵.发酵83h后,Escherichia coli WS100在玉米浆培养基中消耗葡萄糖96.17g/L,积累琥珀酸63.45g/L,生产强度和质量收率分别为0.76g/(L·h)和65.98%;Escherichia coli WS100在NBS培养基中消耗葡萄糖ll0.30g/L,琥珀酸的产量达到84.98g/L,生产强度和质量收率分别为1.02g/(L·h)和77.04%.实验结果表明,Escherichia coli WS100在玉米浆培养基和NBS培养基中发酵均有较高的琥珀酸产量,其中在NBS培养基中琥珀酸的产量、生产强度和质量收率均比在玉米浆培养基中高.  相似文献   

20.
γ-聚谷氨酸发酵工艺研究   总被引:1,自引:0,他引:1  
采用发酵技术,利用枯草芽孢杆菌发酵生产γ-聚谷氨酸,对γ-聚谷氨酸发酵工艺进行研究。主要研究碳源、氮源、装液量、接种量、发酵时间、p H以及前体谷氨酸钠和促进剂氯化铵对γ-聚谷氨酸发酵的影响。前期研究表明,γ-聚谷氨酸发酵液黏度与其产量线性相关,故本研究中采用发酵液黏度作为γ-聚谷氨酸产量的衡量指标。通过单因素试验和正交试验,对发酵培养基和发酵条件进行优化,最后得到最佳发酵培养基配方和发酵条件。通过单因素及正交试验,确定最佳发酵培养基配方为:葡萄糖4%,酵母膏0.5%,谷氨酸钠3%,Mg SO4·7H2O 0.025%,K2HPO40.2%,氯化铵0.3%;最佳发酵条件为:初始p H 9.5,装液量50m L,接种量6%,摇床转速为220 r/min,37℃振荡培养72 h。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号