首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
多孔结构V_2O_5材料在锂离子嵌入和循环稳定性方面有明显优势而引起广泛关注,然而通过简易方法来制备均匀且具有多孔结构的V_2O_5微球仍面临挑战。本文以偏钒酸铵作为钒源,通过简单的一步溶剂热反应后置于大气中进行烧结,最后制备了V_2O_5多孔微球。采用X射线衍射(XRD)、扫描电镜(SEM)以及电化学测试等手段对其进行表征和测试。结果表明,V_2O_5多孔微球作为锂离子电池正极材料具有良好的电化学性能,其首次放电比容量在0.2 C、1 C和4 C倍率时分别为249.7 m Ah·g-1、212 m Ah·g-1和160.1 m Ah·g-1,同时也表现出了良好的循环性能,其在1 C条件下循环50圈后的比容量为172.8 m Ah g-1,其保持率约为81%。  相似文献   

2.
以大鳞片石墨制备的膨胀石墨(EG)为原料,采用改进的Hummers法制备氧化石墨,采用Na BH4化学还原制备石墨烯。采用扫描电镜和X射线衍射仪对化学还原后的石墨烯进行形貌和结构表征,应用电池测试系统对样品进行循环伏安(CV)、恒流充放电等电化学性能测试。结果表明:石墨烯电极在电流密度100m A·g-1时的首次放电比容量达1900m Ah·g-1;经100个循环周期后石墨烯电极比容量为450m Ah·g-1;在不同电流密度下循环50次,再回到100m A·g-1时,仍保持首次循环92%的比容量。  相似文献   

3.
以柠檬酸为螯合剂,采用溶胶-凝胶法通过调节煅烧温度和陈化时间制备了不同粒径的富锂正极材料Li_(1.2)Mn_(0.54)Ni_(0.13)Co_(0.13)O_2。结果表明材料的粒径随煅烧温度增加,逐渐增大;随着陈化时间的增加,呈现先增大后变小的趋势。当煅烧温度为850℃,陈化时间为10 d时,材料具有最优的电化学性能,尤其是倍率性能。在2.0~4.8 V的电压范围内以0.1 C充放电循环60周后放电比容量仍为206.7 m Ah·g-1,2.0 C时的放电比容量为125.6 m Ah·g-1。  相似文献   

4.
由于碳包覆能有效抑制硅材料在循环过程中的体积变化,减缓颗粒粉碎和无法形成稳定SEI膜的问题,提升原材料的电化学性能,因此我们制备了一种形貌均匀的Si/C/CNT负极材料。多巴胺热解形成的碳层能有效抑制硅的体积膨胀,而在外部的碳纳米管不仅协助抑制硅体积膨胀,而且提供了电子传导的通道,从而使材料表现出优异的电化学性能。测试产物的电化学性能结果显示:在0.42 A g-1倍率下,首次放电比容量分别为1500 m Ah g-1,经过100次循环后放电比容量为978 m Ah g-1,其容量保持率为65.2%。  相似文献   

5.
采用共沉淀-高温固相法制备了富锂正极材料Li[Li0.2Ni0.2Mn0.6]O2,并使用Zr(OC3H7)4进行了Zr O2包覆改性。通过X射线粉末衍射(XRD)、透射电子显微镜(TEM)和电化学测试手段讨论了Zr O2包覆对材料的结构、形貌和电化学性能的影响。Zr O2能均匀覆盖在Li[Li0.2Ni0.2Mn0.6]O2颗粒表面,包覆后材料的电化学性能有一定的改善。包覆质量分数0.5%的Zr O2样品表现了提高的循环和倍率性能。首次放电容量(0.1 C,2.0~4.8 V)高达250.8 m Ah·g-1,循环45周(0.2C)容量保持为201.6 m Ah·g-1,2.0 C倍率放电容量可达123.2 m Ah·g-1。  相似文献   

6.
采用溶胶-凝胶法制备了锂离子电池正极材料LiNi_(0.5)Mn_(1.5)O_5,重点探索了溶液p H对材料物理和电化学性能的影响。其中pH=6.0时制备的材料具有最高的放电比容量、最好的倍率和循环性能。在3 C充放电电流下材料的最高放电比容量为104.2 m Ah·g~(-1),循环200次的放电比容量为95.1 mAh·g~(-1)。  相似文献   

7.
采用草酸盐共沉淀法制备了一系列(x=0.1、0.2、0.3、0.4、0.5)异质结构的尖晶石/层状复合正极材料LiNi_(1/3)Co_(1/3)Mn_(1/3)O_2。借助X射线衍射(XRD)、X射线光电子能谱(XPS)、扫描电镜(SEM)、透射电镜(TEM)、电化学阻抗谱(EIS)和恒电流充放电测试等表征手段对材料的晶体结构、微观形貌和电化学性能进行了系统研究。结果表明,x=0.2的材料具有最佳的高倍率性能和长循环稳定性。在2.7~4.5 V,1C下循环100次后(1 C=180 m A?g~(-1)),放电比容量为144 m Ah?g-1,容量保持率为92%;在10 C时的放电比容量仍能达到126 m Ah?g~(-1),相比于原始LiNi_(1/3)Co_(1/3)Mn_(1/3)O_2材料的放电比容量(73 m Ah?g~(-1))有较大提高。此外,该材料的储能能力也非常突出,在0.1和10 C时的比能量密度分别为733.44和437.21 W×h?kg~(-1)。  相似文献   

8.
以5 V高电压LiNi_(0.5)Mn_(1.5)O_4为正极材料,高安全性Li_4Ti_5O_(12)为负极材料制备了LiNi_(0.5)Mn_(1.5)O_4/Li_4Ti_5O_(12)全电池,重点研究了正负极容量配比对电池电化学性能的影响。其中正极容量过量40%的电池具有最好的倍率和循环性能,在0.5 C电流下,P/N=1.4的电池的最高放电比容量为164.1 m Ah·g~(-1),循环200次的容量保持率为88%;在2 C电流下,P/N=1.4的电池的最高放电比容量为135.2 m Ah·g~(-1),循环740次的容量保持率为91.1%。P/N=1.4的电池良好的倍率和循环性能与其内阻较小、电池极化较小等因素有关。  相似文献   

9.
以钛酸四丁酯((C_4H_9O)_4Ti)为原料,以聚乙烯吡咯烷酮(PVP)为粘结剂,采用静电纺丝技术制备了锂离子电池负极材料Ti O_2,研究了不同保温时间对材料性能的影响。采用X射线衍射及扫描电子显微镜分别对样品物相及形貌进行了表征,结果表明,在450℃下保温1 h、2 h、3 h均得到了纤维状结构的纯相锐钛矿Ti O_2。室温条件下的充放电测试表明,保温2 h制备的氧化钛具有最好的电化学性能,其在0.2 C、0.5 C、1 C、2 C充放电倍率下首圈容量分别为203.2 m Ah/g、177.2 m Ah/g、153.4 m Ah/g、131.6 m Ah/g,以0.2 C的倍率循环100圈后,容量保持率为89%。  相似文献   

10.
通过水热法制备Bi_2O_3-rGO复合物作为高性能锂离子电池负极材料。Bi_2O_3颗粒均匀分布在石墨烯片层中,形成网络结构。Bi_2O_3-rGO复合物负极材料表现出了优异的电化学性能,在100 m A/g的电流密度下,首次放电比容量为1 438.6 m A·h/g,循环100次后容量为312.1 m A·h/g,高于未包覆的Bi_2O_3粉末(首次放电比容量为1 709.6 m A·h/g,循环100次后容量为47 m A·h/g),且在800 m A/g的电流密度下,容量仍有239.1 m A·h/g。Bi_2O_3-rGO复合物优异的电化学性能主要归因于高的电子导电率、大的比表面积及低程度的结构坍塌。  相似文献   

11.
柳孟良  陶熏 《广东化工》2016,(16):108-109
采用二步固相法制备了Li_4Ti_(4.95)Nb_(0.05)O_(12)负极材料,扫描电镜、激光粒度分布仪、充放电测试和循环伏安等测试结果表明:合成的样品粒径分布均匀,Nb掺杂改性的Li_4Ti_5O_(12)具有优良的电化学性能,0.1 C、0.5 C、1 C和10 C首次放电比容量分别为174.1 m Ah/g、159.7 m Ah/g、147 m Ah/g和123.3 m Ah/g。10 C下,循环20次后容量保持为118.1 m Ah/g。  相似文献   

12.
采用超声辅助溶液法在尖晶石Li Mn_2O_4表面包覆LiAlO_2。通过X射线衍射、扫描电子显微镜、恒电流充放电及交流阻抗技术分析合成材料的结构、粒径、形貌及电化学性能。XRD测试结果表明:LiAlO_2包覆Li Mn_2O_4与Li Mn_2O_4的X射线衍射结果相差不大,包覆后的样品仍为尖晶石结构,没有出现杂质相。室温下0.2 C充放电时,包覆0.5%、1%、3%LiAlO_2的LiMn_2O_4首次放电比容量分别为123.3、120.2 m A·h/g和118.7 m A·h/g,低于未包覆Li Mn_2O_4的125.4 m A·h/g,但在1C和5C高倍率下,包覆3%LiAl O_2的Li Mn_2O_4放电比容量分别为107.8 m A·h/g和85.6 m A·h/g,高于未包覆的104.2 m A·h/g和64.1 m A·h/g。室温下以1 C倍率循环50次后,表面包覆3%LiAlO_2的Li Mn_2O_4的容量保持率比未包覆高出2.9%。  相似文献   

13.
以Na OH和NH3·H2O为沉淀剂,采用共沉淀法成功合成富锂锰基层状正极材料。通过X射线粉末衍射(XRD)、拉曼光谱、扫描电子显微镜(SEM)、循环伏安法(CV)、电化学阻抗谱(EIS)和充放电测试等研究手段,重点探讨了不同镍钴锰比对富锂锰基层状正极材料的结构、形貌以及电化学性能的影响。其中Li1.2Mn0.54Ni0.13Co0.13O2正极材料结晶度高,粒度分布均匀,无明显团聚现象。在0.1C倍率下首次放电比容量为247.9 m A·h·g-1,首次库仑效率为75.1%。在1C倍率下首次放电比容量为236.2 m A·h·g-1,经过50次充放电循环后放电比容量为218.4 m A·h·g-1,容量保持率为88.3%,展现出较好的循环稳定性。  相似文献   

14.
本文采用同步碳化与活化的方法将鸡蛋碳化制备了三种生物质多孔材料,并将其应用于锂硫电池复合正极材料。研究结果表明:鸡蛋与Na OH溶液混合,在700℃、800℃和900℃下保温4h,可以得到无定型结构的类石墨碳,800℃下制备的多孔材料(Egg-800)孔径较均匀,中孔直径约为4 nm,BET比表面积为205 m2·g~(-1); Egg-800/S正极具有最优的电化学性能,0. 05 C倍率下放电比容量达到899 m Ah·g~(-1),高于Egg-700/S和Egg-900/S的601和730 m Ah·g~(-1);从2 C的高倍率再次回到0. 2 C时,Egg-800/S的放电比容量依旧可以恢复到初始倍率0. 2 C的89%。  相似文献   

15.
在浓氢氧化钠溶液中,通过电化学方法氧化银纳米颗粒制备得到AgO有序阵列结构电极材料。性能表征表明,所制备的AgO材料具有独特的直通孔阵列结构,有利于电解质溶液在孔隙中的扩散,可直接用作Al/AgO电池阴极,无需黏结剂等。与常规AgO阴极材料相比,同等条件下,以AgO有序阵列结构材料为阴极所组成电池的放电性能大幅提高,3 C倍率下质量比容量可达422.6 m A·h·g-1,电极活性材料的利用率为97.8%,7 C倍率下质量比容量依然有387.8 m A·h·g-1,活性物质利用率89.7%。同时,循环性能相比传统电极也得到大幅提升,在第10个循环时依然保持着405.2 m A·h·g-1的质量比容量。制备方法易于操作且高效环保,有利于工业化生产;所得材料具有独特结构和性能优势。  相似文献   

16.
以钛酸四丁酯(TBT)、氢氧化锂(LiOH·H_2O)为原料,采用水热法合成锂离子电池负极材料纳米片状钛酸锂(Li4Ti5O12)。通过X-射线衍射、扫描电子显微镜、恒流充放电及电化学阻抗等技术对合成材料的结构、表面形貌及电化学性能进行表征。结果表明,制备的材料为片状结构,具有较大的比表面积,分散性较好。在电压为1.0~2.5 V,以0.5 C的倍率进行充放电,首次放电比容量高达180.2 m Ah/g,循环50次后,容量仍保持162.2 m Ah/g。在10 C高倍率下,放电比容量仍高达130.7 m Ah/g,材料表现出优异的循环性能和倍率性能。  相似文献   

17.
以聚氧化丙烯二醇、异佛尔酮二异氰酸酯、三羟甲基丙烷聚乙二醇为主要原料制备水性聚氨酯(WPU),再以水性聚氨酯为粘结剂与磷酸铁锂(Li Fe PO4)和导电炭黑(SP)混合,得到正极膜片,通过循环、倍率等测试,研究以水性聚氨酯为粘结剂与以聚偏氟乙烯为粘结剂所组装的电池的电化学性能。研究表明,以水性聚氨酯为粘结剂按质量比m(Li Fe PO4)∶m(WPU)∶m(SP)=90∶5∶5调浆制备的正极膜所组装锂离子电池电化学性能最优,在0. 2,1,2,3,5 C时,放电容量分别为162,131,105,90,69 m Ah/g,以0. 2 C倍率循环500次,容量保持率为78. 8%。  相似文献   

18.
以聚氧化丙烯二醇、异佛尔酮二异氰酸酯、三羟甲基丙烷聚乙二醇为主要原料制备水性聚氨酯(WPU),再以水性聚氨酯为粘结剂与磷酸铁锂(Li Fe PO4)和导电炭黑(SP)混合,得到正极膜片,通过循环、倍率等测试,研究以水性聚氨酯为粘结剂与以聚偏氟乙烯为粘结剂所组装的电池的电化学性能。研究表明,以水性聚氨酯为粘结剂按质量比m(Li Fe PO4)∶m(WPU)∶m(SP)=90∶5∶5调浆制备的正极膜所组装锂离子电池电化学性能最优,在0. 2,1,2,3,5 C时,放电容量分别为162,131,105,90,69 m Ah/g,以0. 2 C倍率循环500次,容量保持率为78. 8%。  相似文献   

19.
张卫新  赵飞  王强  杨则恒 《化工学报》2010,61(10):2719-2725
以自制Li3PO4为前驱体,在水热条件下与FeSO4.7H2O反应制备得到纯相LiFePO4,并通过碳包覆和Cu2+掺杂对其进行了有效改性,获得了适合高电流密度放电的LiFePO4正极材料。采用X射线衍射(XRD)、透射电子显微镜(TEM)和扫描电子显微镜(SEM)对产物进行了物相和形貌表征。实验研究了水热反应温度对产物的形貌及其电化学性能的影响,同时探讨了掺杂Cu2+对材料常温和低温电化学性能的影响。结果表明:在200℃、24h水热条件下制得的产物,经碳包覆后的复合材料LiFePO4/C(LFP200/C),以1C(150mA.g-1)电流放电,放电比容量达140.7mAh.g-1;对材料进行Cu2+掺杂得到的Cu-LFP200/C材料的放电比容量及倍率性能得到进一步提高,常温下1C倍率的放电比容量为150.3mAh.g-1,10C倍率的放电比容量为108.7mAh.g-1,在-30℃条件下的放电比容量依然达到97mAh.g-1。  相似文献   

20.
采用L-半胱氨酸盐酸盐(L-Cys·HCl)辅助乙醇热成功制备Sb_2S_3纳米棒,并采用XRD、SEM、循环伏安法和恒电流充放电技术对其进行了物理及电化学性能表征。结果表明:所制备得到的Sb_2S_3材料表现出良好的电化学储锂性能,在100 m A·g~(-1)电流密度下,首次可逆比容量为823 m Ah·g~(-1),30次循环后,保持在622 m Ah·g~(-1),容量保持率为76%;当电流密度提高到500 m A·g~(-1)时,可逆比容量也在400 m Ah·g~(-1)以上。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号