首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Growth shapes of inorganic crystalline solids govern material properties such as catalytic activity and selectivity, solar cell efficiency, and so forth. A systematic understanding of the crystal growth process and the solid‐state interactions within inorganic crystals should help to engineer crystal shapes. A general model that identifies periodic bond chains in inorganic crystals while accounting for the long‐range electrostatic interactions is presented. The variation in the electronic structure and the partial charges of growth units on the inorganic crystal surfaces has been captured using the bond valence model. The electrostatic interaction energies in the kink sites of inorganic crystals were calculated using a space partitioning method that is computationally efficient. This model provides a quantitative explanation for the asymmetric growth spirals formed on the surface of calcite. This methodology for studying solid‐state interactions can be used with a mechanistic growth model to predict the morphology of a wide variety of inorganic crystals. © 2014 American Institute of Chemical Engineers AIChE J, 60: 3707–3719, 2014  相似文献   

2.
A capillary switch is a system of two liquid drops, one sessile and the other pendant, obtained by overfilling a hole of radius R in a plate. When surface tension dominates gravity, the equilibrium shapes of the drops are spherical sections of equal radii. If the combined volume of the top VT and bottom VB drops exceeds , the system has three equilibrium states of which two are stable. This bistability is exploited in applications by toggling the system between its two stable states. Here, we examine the effectiveness of using an electric field for toggling. Bifurcation diagrams are obtained that depict how the system's response varies with applied field strength E, and show loss of stability at turning points and the possibility of hysteresis. A phase diagram in space is presented to readily infer when an electric field is an effective means for toggling. © 2014 American Institute of Chemical Engineers AIChE J, 60: 1451–1459, 2014  相似文献   

3.
This article presents the research results of direct contact condensation of steam on freely formed falling liquid jets. After the comparison of experimental data and open literature correlations it was concluded that published correlations does not provide accurate coverage of experimental data. A new correlation was established in the following form © 2016 American Institute of Chemical Engineers AIChE J, 62: 2579–2584, 2016  相似文献   

4.
The flow and mass transfer in a discontinuous reactor configuration consisting of a pair of corotating enclosed disks with a chemical reaction taking place at the disk surfaces have been analyzed. The calculated mass‐transfer efficiencies do not follow the expected dependence because the overall mass‐transfer process is not boundary‐layer controlled, especially at high Schmidt numbers. It has been found in all of the cases investigated that despite the fact that the reactant concentration is continuously dropping with time its spatial distribution, relative to the volume‐averaged value, becomes stationary after a short initial transient. This result implies that the mass‐transfer efficiency in the discontinuous reactor also becomes stationary and the resulting time‐independent value, , obtained either directly from calculation or from the fit of the collected results, provides a fairly good estimate of the reactor operation time needed to achieve the target reactant conversion. © 2014 American Institute of Chemical Engineers AIChE J, 61: 1015–1031, 2015  相似文献   

5.
The microstructure influence on conductive transport processes is described in terms of volume fraction ε, tortuosity τ, and constrictivity β. Virtual microstructures with different parameter constellations are produced using methods from stochastic geometry. Effective conductivities are obtained from solving the diffusion equation in a finite element model. In this way, a large database is generated which is used to test expressions describing different micro–macro relationships such as Archie's law, tortuosity, and constrictivity equations. It turns out that the constrictivity equation has the highest accuracy indicating that all three parameters are necessary to capture the microstructure influence correctly. The predictive capability of the constrictivity equation is improved by introducing modifications of it and using error‐minimization, which leads to the following expression: with intrinsic conductivity . The equation is important for future studies in, for example, batteries, fuel cells, and for transport processes in porous materials. © 2014 American Institute of Chemical Engineers AIChE J, 60: 1983–1999, 2014  相似文献   

6.
A power‐law expression is proposed for correlating the temperature dependence of infinite‐dilution activity coefficients ( ) for nonelectrolyte solute–solvent binary pairs and for pairs including an ionic liquid: , where θij = 0 for Lewis–Randall ideal solutions, θij = 1 for classic enthalpy‐based Scatchard–Hildebrand regular solution and van Laar models, and ?5 < θij < 5 for most real binaries. The exponent θij is a function of partial molar excess enthalpy ( ) and entropy ( ) such that . Real binaries are classified into seven types corresponding to distinct domains of and θij. The new method provides a framework for correlating phase‐equilibrium driven temperature effects for a wide variety of chemical and environmental applications. © 2014 American Institute of Chemical Engineers AIChE J, 60: 3675–3690, 2014  相似文献   

7.
We numerically study coalescence of air microbubbles in water, with density ratio 833 and viscosity ratio 50.5, using lattice Boltzmann method. The focus is on the effects of size inequality of parent bubbles on the interfacial dynamics and coalescence time. Twelve cases, varying the size ratio of large to small parent bubble from 5.33 to 1, are systematically investigated. The “coalescence preference,” coalesced bubble closer to the larger parent bubble, is well observed and the captured power‐law relation between the preferential relative distance χ and size inequality γ, , is consistent to the recent experimental observations. Meanwhile, the coalescence time also exhibits power‐law scaling as , indicating that unequal bubbles coalesce faster than equal bubbles. Such a temporal scaling of coalescence on size inequality is believed to be the first‐time observation as the fast coalescence of microbubbles is generally hard to be recorded through laboratory experimentation. © 2016 American Institute of Chemical Engineers AIChE J, 63: 1441–1450, 2017  相似文献   

8.
Our previous analytical solution gives sag advancing implicitly as , or for , sag advances with the cube root of time for a thin wide rectangular Newtonian isothermal sheet. This previous analytical work applies to sheets that are pinned along just two edges, and not all the way around. Corresponding sagometer experimental results confirmed this cube root relation. This work compares the prediction with measured commercial thermoforming behavior on rectangular sheets that are, of course, pinned all the way around. Then sag parallel superposition is used to extend for a sheet pinned all the way around. We evaluate sag parallel superposition using a finite element method (FEM) employing ANSYS Polyflow. The equation assumes sagging sheet cylindricity, and from our FEM we find that this assumption is reliable when . We compare sag measured in commercial thermoforming, using high‐impact polystyrene (HIPS) sheets that are pinned all the way around, by extending with parallel superposition. It is found that the time evolution of the commercial sag follows nearly exactly the same shape as the isothermal prediction. We measure sag runaway, and although the isothermal analysis , predicts the sag runaway time accurately, our isothermal theory overpredicts the amount of sag in the nonisothermal commercial operation by as much as a factor of 14. It is also shown how to use sheet sag measurements from commercial thermoforming to deduce the Newtonian viscosity of a thermoforming resin at a temperature that is above its softening point. © 2013 American Institute of Chemical Engineers AIChE J, 60: 1529–1535, 2014  相似文献   

9.
The production of latexes stabilized by solid particles, so‐called Pickering stabilizers, has attracted considerable attention due to its benefits, including the enhanced mechanical properties of the polymer films. Clays for instance were found to enhance particle stabilization in emulsion polymerization, in a comparable way to conventional surfactants. Their concentration thus determines the polymer particles size and number, and consequently the reaction rate. In this work, we investigate the impact of the presence of such rigid and big platelets at the polymer particle's surface on radical exchange between the aqueous phase and the polymer particles. It was found for the system underhand that the average number of radicals per particle ( ) was independent of the stabilizer layer. Therefore, a radical capture model independent of the clay concentration could be used to simulate reactions involving different clay concentrations and predict the evolution of the monomer conversion, particle size, and . © 2018 American Institute of Chemical Engineers AIChE J, 64: 2612–2624, 2018  相似文献   

10.
Cross‐linked polymeric gels are widely used in applications ranging from biomaterial scaffolds to additives in enhanced oil recovery. Despite this, fundamental understanding of the effect of polymer concentration and reaction mechanism on the scaffold structure is lacking. We measure scaffold properties and structure during gelation using multiple particle tracking microrheology. To determine the effect of concentration, we measure gelation as polymer interactions are increased in the backbone precursor solution: below, at and above the overlap concentration, . To determine structural changes due to the gelation mechanism, we measure gelation between the same polymers undergoing both step‐ and chain‐growth reactions using self‐assembling maleimide:thiol and photo‐initiated acrylate:thiol chemistries, respectively. We determine the critical relaxation exponent, n, a measure of structure. n decreases with increasing concentration, indicating a change from a percolated ( ) to a tightly cross‐linked network ( ). The gelation mechanism does not have a measurable effect on the scaffold structure. © 2018 American Institute of Chemical Engineers AIChE J, 64: 3168–3176, 2018  相似文献   

11.
Mass transfer around a bubble rising in a liquid under Stokes regime is investigated when a reversible chemical reaction, , is taken into account. Four dimensionless parameters control the interfacial transfer rate: the Péclet and Damköhler numbers, the ratio of the diffusion coefficient of both species, and the reaction equilibrium constant. The mass‐transfer equations are solved numerically with a finite element technique. A boundary layer approach is also proposed and solved with a coupled technique of finite difference and Chebyshev‐spectral method. The equilibrium constant and the ratio of diffusion coefficients have a strong influence on the coupling between the chemical reaction and mass transfer leading to an increase of the Sherwood number. The interaction between the chemical reaction and advection is clearly established by the simulations. Conditions corresponding to Péclet number larger than the Damköhler number reduces the effect of the chemical reaction. © 2014 American Institute of Chemical Engineers AIChE J, 60: 3376–3388, 2014  相似文献   

12.
Fully resolved simulations of flow past fixed assemblies of monodisperse spheres in face‐centered‐cubic array or random configurations, are performed using an iterative immersed boundary method. A methodology has been applied such that the computed gas–solid force is almost independent of the grid resolution. Simulations extend the previously similar studies to a wider range of solids volume fraction ( [0.1, 0.6]) and Reynolds number (Re [50, 1000]). A new drag correlation combining the existed drag correlations for low‐Re flows and single‐sphere flows is proposed, which fits the entire dataset with an average relative deviation of 4%. This correlation is so far the best possible expression for the drag force in monodisperse static arrays of spheres, and is the most accurate basis to introduce the particle mobility for dynamic gas–solid systems, such as in fluidized beds. © 2014 American Institute of Chemical Engineers AIChE J, 61: 688–698, 2015  相似文献   

13.
Phase‐resolved particle image velocimetry measurements were carried out to assess the flow dynamics occurring in orbitally shaken bioreactors of cylindrical geometry when working fluids of increasing viscosity are considered. Study of the phase‐resolved flow characteristics allowed to built a Re‐Fr map, where four quadrants associated to different flow regimes are identified: in‐phase toroidal vortex (low Fr and high Re), out‐of‐phase precessional vortex (high Fr and high Re), in‐phase single vortex (low Fr and low Re), out‐of‐phase counter‐rotating toroidal vortex (high Fr and low Re). Turbulence levels are found to be significant only in the top right quadrant (high Fr and low Re) and scaling of the turbulent kinetic energy obtained with fluid of varying viscosity is obtained using the ratio of the operating Froude number to the critical Froude number associated to the mean flow transition, . Estimates of the mean flow strain deformation as well as of the flow dissipative scale are provided, while a comparison is made between the flow circulation times obtained for different regimes. © 2014 The Authors AIChE Journal published by Wiley Periodicals, Inc. on behalf of American Institute of Chemical Engineers AIChE J, 60: 3951–3968, 2014  相似文献   

14.
A comprehensive methodology to carry out a sequential parameter estimation approach has been developed and validated for the determination of the kinetic parameters of the crystallization of a generic organic compound. The strength of the approach lies in the thorough design of isothermal experiments which facilitate the isolation and/or decoupling of the different crystallization phenomena. This methodology has been applied for the parameter estimation of primary and secondary nucleation, growth and agglomeration kinetics. The resulting crystallization model has been able to reproduce the quantiles , and of the volume‐based particle size distribution of an independent seeded validation experiment with an error below 10 μm. The deviation in the prediction has been increased in the case of an independent unseeded experiment, although errors below the uncertainty of the measurement have been always obtained. The methodology here proposed is intended to be an efficient strategy for rapid modeling of batch crystallization processes. © 2016 American Institute of Chemical Engineers AIChE J, 62: 3992–4012, 2016  相似文献   

15.
Liquid mixtures of formaldehyde, water, and butynediol are complex reacting multicomponent systems in which formaldehyde forms oligomers both with water and butynediol. ‐ and ‐NMR spectra of these mixtures are elucidated. The species distribution of the oligomers is quantitatively determined by ‐NMR spectroscopy. The measurements cover temperatures from 293 to 366 K, overall formaldehyde mass fractions from to , and overall butynediol mass fractions from to . A mole fraction‐based and an activity‐based model of the chemical equilibrium in the studied system are developed and chemical equilibrium constants are reported. © 2017 American Institute of Chemical Engineers AIChE J, 63: 4442–4450, 2017  相似文献   

16.
Experiments were performed in a customized double stirred tank reactor to study the kinetics of CO2 absorption into NH3 solutions at concentrations ranging from 0.42 to 7.67 kmol·m?3 and temperatures between 273.15 and 293.15 K. The results show that the reactive absorption was first order with respect to CO2 but fractional order (1.6–1.8) with respect to ammonia. Experimental data can be satisfactorily interpreted by a termolecular mechanism using and . © 2016 American Institute of Chemical Engineers AIChE J, 62: 3673–3684, 2016  相似文献   

17.
Instantaneous concentrations of reactive species are simultaneously measured in a planar liquid jet with a second‐order chemical reaction to investigate the statistical properties of the chemical reaction rate and the validity of models which have been proposed for concentration correlation. The jet flow contains the reactant A, and the ambient flow contains the reactant B. The results show that the concentration correlation of the reactants makes a negative contribution to the mean reaction rate, and this contribution is important in the downstream direction. The concentration correlation changes owing to the chemical reaction. The effects of the chemical reaction on the concentration correlation change with the flow location and the Damköhler number. The concentration correlation predicted by the Toor's model and the three‐environment model are compared with the experimental results. The results show that these models fail to accurately estimate the concentration correlation. © 2014 American Institute of Chemical Engineers AIChE J, 60: 3969–3988, 2014  相似文献   

18.
In this work an ultrafast electron beam X‐ray modality was applied for the first time to characterize the gas–liquid Taylor flow inside each channel of an opaque honeycomb monolith structure ( ) for and . Significant spatial and temporal deviations in the phase holdup as well as in the gas bubble and liquid slug lengths were found. To evaluate the impact of Taylor flow maldistribution on the reactor performance, the data of more than unit cells were used to simulate the reactor productivity in the hydrogenation of glucose. The results verify that a monolith reactor solely designed by using superficial velocities and empirical correlations for gas bubble and liquid slug lengths fails significantly in achieving high product selectivity and the desired conversion. The developed methods are a solid base to design and select proper distributors ensuring the favorable flow configurations for specific chemical processes. © 2016 American Institute of Chemical Engineers AIChE J, 62: 4346–4364, 2016  相似文献   

19.
Maximum effective hydrodynamic stress, , responsible for the breakup of aggregates with size comparable to Kolmogorov eddies, was experimentally determined in an aerated stirred tank. The proposed method is based on the measurement of the maximum stable aggregates size consisting of poly(methyl methacrylate) nanoparticles. The fractal aggregates were broken under various operating conditions in an aerated stirred tank and calibrated with known flow conditions using contracting nozzles to convert the measured aggregate sizes into hydrodynamic stress. It was found that can vary substantially among studied conditions and its magnitude depends on the controlling mechanism including gas jet during bubble formation, bubble rise, bubble burst at the gas–liquid interface or the turbulence generated by the impeller. The measured values are in good agreement with literature data which supports the applicability of this method to characterize the maximum effective hydrodynamic stress in complicated multiphase flow. © 2015 American Institute of Chemical Engineers AIChE J, 61: 1735–1744, 2015  相似文献   

20.
Positron Emission Particle Tracking (PEPT) measurements are used to track the flow of glass beads within a rotating drum fitted with (and without) lifter bars and operated in the cascading and cataracting Froude regimes. After converting the Lagrangian trajectories of a representative radio‐labeled glass bead (the tracer) into Eulerian fields under the ergodic assumption, the bed shape and kinematics are extracted for steady, fully developed flow conditions. Notwithstanding the azimuthal wall effects introduced by the lifter bars, we show a linear scaling of the local flowing layer thickness (h) with local depth‐averaged velocity and a constant average shear for direct measurements spanning the entire flowing layer (not just the central region), and high Froude regimes (cascading and cataracting) not previously investigated by scaling analysis in the literature. © 2016 American Institute of Chemical Engineers AIChE J, 63: 903–913, 2017  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号