首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
Outer‐selective thin‐film composite (TFC) hollow fiber membranes offer advantages like less fiber blockage in the feed stream and high packing density for industrial applications. However, outer‐selective TFC hollow fiber membranes are rarely commercially available due to the lack of effective ways to remove residual reactants from fiber's outer surface during interfacial polymerization and form a defect‐free polyamide film. A new simplified method to fabricate outer‐selective TFC membranes on tribore hollow fiber substrates is reported. Mechanically robust tribore hollow fiber substrates containing three circular‐sector channels were first prepared by spinning a P84/ethylene glycol mixed dope solution with delayed demixing at the fiber lumen. The thin wall tribore hollow fibers have a large pure water permeability up to 300 L m?2 h?1 bar?1. Outer‐selective TFC tribore hollow fiber membranes were then fabricated by interfacial polymerization with the aid of vacuum sucking to ensure the TFC layer well‐attached to the substrate. Under forward osmosis studies, the TFC tribore hollow fiber membrane exhibits a good water flux and a small flux difference between active‐to‐draw (i.e., the active layer facing the draw solution) and active‐to‐feed (i.e., the active layer facing the feed solution) modes due to the small internal concentration polarization. A hyperbranched polyglycerol was further grafted on top of the newly developed TFC tribore hollow fiber membranes for oily wastewater treatment. The membrane displays low fouling propensity and can fully recover its water flux after a simple 20‐min water wash at 0.5 bar from its lumen side, which makes the membrane preferentially suitable for oil‐water separation. © 2015 American Institute of Chemical Engineers AIChE J, 61: 4491–4501, 2015  相似文献   

2.
For the first time, the effects of free volume in thin‐film composite (TFC) membranes on membrane performance for forward osmosis and pressure retarded osmosis (PRO) processes were studied in this work. To manipulate the free volume in the TFC layer, a bulky monomer (i.e., p‐xylylenediamine) was blended into the interfacial polymerization and methanol immersion was conducted to swell up the TFC layer. Results from positron annihilation lifetime spectroscopy (PALS) show that p‐xylylenediamine blending and methanol induced swelling enlarge and broaden the free volume cavity. In addition, the performance of TFC membranes consisting of different free volumes were examined in terms of water flux, reverse salt flux, and power density under high pressure PRO operations. The TFC‐B‐5 membrane (i.e., a TFC membrane made of blending monomers) with a moderate free volume shows the highest power density of 6.0 W/m2 at 9 bar in comparison of TFC membranes with other free volumes. After PRO operations, it is found that the free volume of TFC layers decreases due to high pressure compression, but membrane transport properties in terms of water and salt permeability increase. Interestingly, the membrane performance in terms of resistance against high pressures and power density stay the same. A slow positron beam was used to investigate the microstructure changes of the TFC layer after PRO operations. Compaction in free volume occurs and the TFC layer becomes thinner under PRO tests but no visible defects can be observed by both scanning electronic microscopy and PALS. © 2013 American Institute of Chemical Engineers AIChE J, 59: 4749–4761, 2013  相似文献   

3.
The multiple types of efficient oxygen transport paths were demonstrated in high‐mechanical‐strength hepta‐bore Ba0.5Sr0.5Co0.8Fe0.2O3‐δ hollow fiber membranes. These types of paths play a prominent role in enhancing oxygen permeation fluxes (17.6 mL min?1 cm?2 at 1223 K) which greatly transcend the performance of state‐of‐the‐art Ba0.5Sr0.5Co0.8Fe0.2O3‐δ hollow fiber membranes, showing a good commercialization prospect. © 2017 American Institute of Chemical Engineers AIChE J, 63: 4273–4277, 2017  相似文献   

4.
ZIF‐8/6FDA‐DAM, a proven mixed‐matrix material that demonstrated remarkably enhanced C3H6/C3H8 selectivity in dense film geometry, was extended to scalable hollow fiber geometry in the current work. We successfully formed dual‐layer ZIF‐8/6FDA‐DAM mixed‐matrix hollow fiber membranes with ZIF‐8 nanoparticle loading up to 30 wt % using the conventional dry‐jet/wet‐quench fiber spinning technique. The mixed‐matrix hollow fibers showed significantly enhanced C3H6/C3H8 selectivity that was consistent with mixed‐matrix dense films. Critical variables controlling successful formation of mixed‐matrix hollow fiber membranes with desirable morphology and attractive transport properties were discussed. Furthermore, the effects of coating materials on selectivity recovery of partially defective fibers were investigated. To our best knowledge, this is the first article reporting successful formation of high‐loading mixed‐matrix hollow fiber membranes with significantly enhanced selectivity for separation of condensable olefin/paraffin mixtures. Therefore, it represents a major step in the research area of advanced mixed‐matrix membranes. © 2014 American Institute of Chemical Engineers AIChE J, 60: 2625–2635, 2014  相似文献   

5.
The development of high flux and solvent‐stable thin‐film composite (TFC) organic solvent nanofiltration (OSN) membranes was reported. A novel cross‐linked polyimide substrate, consisting of a thin skin layer with minimum solvent transport resistance and a sponge‐like sublayer structure that could withstand membrane compaction under high‐pressure was first fabricated. Then the solvent flux was significantly enhanced without compromising the solute rejection by the coupling effects of (1) the addition of triethylamine/camphorsulfonic acid into the monomer solution, and (2) the combined post‐treatments of glycerol/sodium dodecyl sulphate immersion and dimethyl sulfoxide (DMSO) filtration. Finally, the long‐term stability of the TFC membrane in aprotic solvents such as DMSO was improved by post‐crosslink thermal annealing. The novel TFC OSN membrane developed was found to have superior rejection to tetracycline (MW: 444 g/mol) but was very permeable to alcohols such as methanol (5.12 lm?2h?1bar?1) and aprotic solvents such as dimethylformamide (3.92 lm?2h?1bar?1) and DMSO (3.34 lm?2h?1bar?1). © 2014 American Institute of Chemical Engineers AIChE J, 60: 3623–3633, 2014  相似文献   

6.
This study analyzes the net energy output and optimum operating conditions for osmotic power generation from seawater brine based on the currently available hollow fiber membranes in the module scale. Factors that are influential on membrane performances, such as external concentration polarization, internal concentration polarization, salt reverse diffusion, and dilution have been taken into account. Net power density is defined and applied to characterize the efficiency of the PRO system, in terms of power production minus pumping energy, pretreatment cost and energy consumption by pressure drop in the membranes. When using 1 M NaCl as the draw solution and 10 mM NaCl as the feed, it is found that up to 7 W m?2 net power density can be harvested by the PRO system depending on the water sources. Coupling with the existing RO plant is highly beneficial in terms of readily available high pressure source, high salinity and less or negligible pretreatment costs for the draw solution. Sources with higher salt concentrations are preferred. The optimum hydraulic pressure, module length, flow rate to membrane area ratio and feed to draw flow rate ratio have also been analyzed to maximize the net power output. In addition, implications on hollow fiber development are discussed. Fibers with high water permeability, lower structural parameter, good mechanical stability, better fouling resistance, and outer‐selective configurations are recommended for further studies. © 2015 American Institute of Chemical Engineers AIChE J, 62: 1216–1225, 2016  相似文献   

7.
This work investigates CO2 removal by single and blended amines in a hollow‐fiber membrane contactor (HFMC) under gas‐filled and partially liquid‐filled membrane pores conditions via a two‐scale, nonisothermal, steady‐state model accounting for CO2 diffusion in gas‐filled pores, CO2 and amines diffusion/reaction within liquid‐filled pores and CO2 and amines diffusion/reaction in liquid boundary layer. Model predictions were compared with CO2 absorption data under various experimental conditions. The model was used to analyze the effects of liquid and gas velocity, CO2 partial pressure, single (primary, secondary, tertiary, and sterically hindered alkanolamines) and mixed amines solution type, membrane wetting, and cocurrent/countercurrent flow orientation on the HFMC performance. An insignificant difference between the absorption in cocurrent and countercurrent flow was observed in this study. The membrane wetting decreases significantly the performance of hollow‐fiber membrane module. The nonisothermal simulations reveal that the hollow‐fiber membrane module operation can be considered as nearly isothermal. © 2014 American Institute of Chemical Engineers AIChE J, 61: 955–971, 2015  相似文献   

8.
The U‐shaped alkaline‐earth metal‐free CO2‐stable oxide hollow‐fiber membranes based on (Pr0.9La0.1)2(Ni0.74Cu0.21Ga0.05)O4+δ (PLNCG) are prepared by a phase‐inversion spinning process and applied successfully in the partial oxidation of methane (POM) to syngas. The effects of temperature, CH4 concentration and flow rate of the feed air on CH4 conversion, CO selectivity, H2/CO ratio, and oxygen permeation flux through the PLNCG hollow‐fiber membrane are investigated in detail. The oxygen permeation flux arrives at approximately 10.5 mL/min cm2 and the CO selectivity is higher than 99.5% with a CH4 conversion of 97.0% and a H2/CO ratio of 1.8 during 140 h steady operation. The spent hollow‐fiber membrane still maintains a dense microstructure and the Ruddlesden‐Popper K2NiF4‐type structure, which indicates that the U‐shaped alkaline‐earth metal‐free CO2‐tolerant PLNCG hollow‐fiber membrane reactor can be steadily operated for POM to syngas with good performance. © 2014 American Institute of Chemical Engineers AIChE J, 60: 3587–3595, 2014  相似文献   

9.
Polysulfone (PSF) hollow fiber membranes were spun by phase‐inversion method from 29 wt % solids of 29 : 65 : 6 PSF/NMP/glycerol and 29 : 64 : 7 PSF/DMAc/glycol using 93.5 : 6.5 NMP/water and 94.5 : 5.5 DMAc/water as bore fluids, respectively, while the external coagulant was water. Polyvinyl alcohol/polysulfone (PVA/PSF) hollow fiber composite membranes were prepared after PSF hollow fiber membranes were coated using different PVA aqueous solutions, which were composed of PVA, fatty alcohol polyoxyethylene ether (AEO9), maleic acid (MAC), and water. Two coating methods (dip coating and vacuum coating) and different heat treatments were discussed. The effects of hollow fiber membrane treatment methods, membrane structures, ethanol solution temperatures, and MAC/PVA ratios on the pervaporation performance of 95 wt % ethanol/water solution were studied. Using the vacuum‐coating method, the suitable MAC/PVA ratio was 0.3 for the preparation of PVA/PSF hollow fiber composite membrane with the sponge‐like membrane structure. Its pervaporation performance was as follows: separation factor (α) was 185 while permeation flux (J) was 30g/m2·h at 50°C. Based on the experimental results, it was found that separation factor (α) of PVA/PSF composite membrane with single finger‐void membrane structure was higher than that with the sponge‐like membrane structure. Therefore, single finger‐void membrane structure as the supported membrane was more suitable than sponge‐like membrane structure for the preparation of PVA/PSF hollow fiber composite membrane. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 98: 247–254, 2005  相似文献   

10.
A multichannel mixed‐conducting hollow fiber (MMCHF) membrane, 0.5 wt % Nb2O5‐doped SrCo0.8 Fe0.2O3‐δ (SCFNb), has been successfully prepared by phase inversion and sintering technique. The crystalline structure, morphology, sintering behavior, breaking load, and oxygen permeability of the MMCHF membrane were studied systematically. The MMCHF membrane with porous‐dense asymmetrical microstructure was obtained with the outer diameter of 2.46 mm and inner tetra‐bore diameter of 0.80 mm. The breaking load of the MMCHF membrane was 3–6 times that of conventional single‐channel mixed‐conducting hollow fiber membrane. The MMCHF membrane showed a high oxygen flux which was about two times that of symmetric capillary membrane at similar conditions as well as a good long‐term stability under low oxygen partial pressure atmosphere. This work proposed a new configuration for the mixed‐conducting membranes, combining advantages of multichannel tubular membrane technology and conventional hollow fibers. © 2014 American Institute of Chemical Engineers AIChE J, 60: 1969–1976, 2014  相似文献   

11.
High performance thin-film composite (TFC) hollow fiber membranes have been developed for pervaporation dehydration by second interfacial polymerization (SIP) modification with three kinds of amine-functionalized β-cyclodextrin (amine-CDs), which were synthesized by modifying β-CD with ammonia, ethylenediamine (EDA), and tris(2-aminoethyl)amine, respectively. The chemical properties of amine-CDs and SIP-modified TFC membranes were characterized by various techniques. The effects of amine-CD type and SIP parameters (pH or concentration of CD-EDA solution) were studied systematically to acquire the optimized selective layer of TFC membranes for ethanol dehydration. Among all SIP-modified TFC membranes, the one with SIP by 2 wt% CD-EDA aqueous solution (pH = 2) exhibited the most outstanding separation performance with a ultrahigh permeation flux (3,018.0 ± 12.0 g/m2 hr) and permeate concentration (98.7 ± 0.2 wt% water) at 50°C (equivalent to separation factor of 415), contributed by the effectively incorporated CD with rich hydrophilic functional groups and intrinsic nanocavities facilitating the passage of water molecules.  相似文献   

12.
Hollow fiber membranes with a multibore configuration have demonstrated their advantages with high mechanical strength, easy module fabrication, and excellent stability for membrane distillation (MD). In this work, the microstructure of multibore fibers was optimized for vacuum MD (VMD). A microstructure consisting of a tight liquid contact surface and a fully porous cross‐section is proposed and fabricated to maximize the wetting resistance and VMD desalination performance. The new membrane exhibited a high VMD flux of 71.8 L m?2 h?1 with a 78°C model seawater feed. Investigations were also carried to examine various effects of VMD operational conditions on desalination performance. The 7‐bore membrane showed higher flux and superior thermal efficiency under the VMD configuration than the direct contact MD configuration. Different from the traditional single‐bore hollow fiber, the VMD flux of multibore membrane at the lumen‐side feed configuration was higher than that of the shell‐side feed due to the additional evaporation surface of multibore geometry. © 2013 American Institute of Chemical Engineers AIChE J, 60: 1078–1090, 2014  相似文献   

13.
A Mo‐substituted lanthanum tungstate mixed proton‐electron conductor, La5.5W0.6Mo0.4O11.25?δ (LWM04), was synthesized using solid state reactions. Dense U‐shaped LWM04 hollow‐fiber membranes were successfully prepared using wet‐spinning phase‐inversion and sintering. The stability of LWM04 in a CO2‐containing atmosphere and the permeation of hydrogen through the LWM04 hollow‐fiber membrane were investigated in detail. A high hydrogen permeation flux of 1.36 mL/min cm2 was obtained for the U‐shaped LWM04 hollow‐fiber membranes at 975°C when a mixture of 80% H2?20% He was used as the feed gas and the sweep side was humidified. Moreover, the hydrogen permeation flux did not significantly decrease over 70 h of operation when fed with a mixture containing 25% CO2, 50% H2, and 25% He, indicating that the LWM04 hollow‐fiber membrane has good stability under a CO2‐containing atmosphere. © 2015 American Institute of Chemical Engineers AIChE J, 61: 1997–2007, 2015  相似文献   

14.
In this study, a fabricated hydrophilic poly(vinyl alcohol‐co‐ethylene) (PVA‐co‐PE) nanofiber membrane was used as the middle support layer to prepare thin film composite (TFC) membranes for nanofiltration. The effects of the supporting nonwoven layer, grams per square meter (GSM) of nanofiber, reaction time, heat treatment, monomer concentration, operating pressure, and pH value on the separation performance of the TFC membranes were analyzed. These results show that the TFC membranes prepared with the PVA‐co‐PE nanofiber membrane can be used to filtrate different metal ions. For NaCl, Na2SO4, CaCl2, CuCl2, CuSO4, and methyl orange solutions, the rejection rates of the TFC membrane with nonwoven polyester as the supporting layer and a nanofiber GSM of 12.8 g/m2 are 87.9%, 93.4%, 92.0%, 93.1%, 95.8%, and 100%, respectively. This indicates the potential application of the PVA‐co‐PE nanofiber membrane in the preparation of nanofiltration and reverse‐osmosis TFC membranes. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46261.  相似文献   

15.
Thin-film nanocomposite (TFN) membranes were fabricated by interfacial polymerization of a polyamide (PA) layer on the shell side of hollow fiber membrane supports. TiO2 nanoparticle loadings in the thin-film layer were 0.01, 0.05, and 0.20 wt %. Nanoparticle-free PA thin-film composite (TFC) membranes served as the comparative basis. The TFN membranes were characterized in terms of the chemical composition, structure, and surface properties of the separation layer. Incorporating nanoTiO2 improved membrane permeability up to 12.6-fold. During preliminary laboratory-scale evaluation, TFN membranes showed lower salt rejection but higher TOC rejection in comparisons with the corresponding values for TFC controls. Based on the performance in lab-scale tests, TFN membranes with 0.01 wt % nanoTiO2 loading were selected for an evaluation at the pilot scale with synthetic surface water as the feed. While the permeate flux during long-term pilot-scale operation gradually decreased for TFC membranes, TFN membranes had a higher initial permeate flux that gradually increased with time. The TOC rejection by TFN and TFC membranes was comparable. We conclude that TFN membranes show promise for full-scale surface water treatment applications. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 48205.  相似文献   

16.
The novel fixed‐site‐carrier (FSC) membranes were prepared by coating carbon nanotubes reinforced polyvinylamine/polyvinyl alcohol selective layer on top of ultrafiltration polysulfone support. Small pilot‐scale modules with membrane area of 110–330 cm2 were tested with high pressure permeation rig. The prepared hybrid FSC membranes show high CO2 permeance of 0.084–0.218 m3 (STP)/(m2 h bar) with CO2/CH4 selectivity of 17.9–34.7 at different feed pressures up to 40 bar for a 10% CO2 feed gas. Operating parameters of feed pressure, flow rate, and CO2 concentration were found to significantly influence membrane performance. HYSYS simulation integrated with ChemBrane and cost estimation was conducted to evaluate techno‐economic feasibility of a membrane process for natural gas (NG) sweetening. Simulation results indicated that the developed FSC membranes could be a promising candidate for CO2 removal from low CO2 concentration (10%) NGs with a low NG sweetening cost of 5.73E?3 $/Nm3 sweet NG produced. © 2014 American Institute of Chemical Engineers AIChE J 60: 4174–4184, 2014  相似文献   

17.
Ceramic hollow fiber membranes are investigated with respect to the fouling behavior. Constant pressure dead‐end filtration experiments have been performed using alginate as model substance for extracellular polymeric substances. In addition to the evaluation of the filtration data using conventional cake filtration model, nuclear magnetic resonance imaging (MRI) was used to elucidate the influence of Ca2+ on the fouling layer structure for alginate filtration within ceramic hollow fiber membranes. To visualize the alginate layers inside the opaque ceramic hollow fiber membranes by means of MRI, specific contrast agents were applied. Supplementary to multi slice multi echo imaging, flow velocity measurements were performed to gain more insight into the hydrodynamics in the fouled membranes. MRI reveals the structure of the alginate layers with the finding that the addition of Ca2+ to the alginate feed solution promotes the formation of a dense alginate gel layer on the membrane's surface. © 2016 American Institute of Chemical Engineers AIChE J, 62: 2459–2467, 2016  相似文献   

18.
A novel coating technique, named as two‐way coating (TWC), was explored to prepare hollow fiber composite (HFC) nanofiltration (NF) membrane through interfacial polymerization from piperazine (PIP) and trimesoyl chloride (TMC) on the lumen side of hollow fiber polysulfone ultrafiltration membrane with an effective membrane area of 0.4 m2. The optimum preparation conditions were systematically investigated and obtained as follows: PIP 0.023 mol/L, TMC 0.0057 mol/L, air blowing rate 2.7 m/s for 30 min after aqueous coating, aqueous coating pressure 0.1 MPa, organic solution flowing rate 0.32 m/s, and heat treating time 3 min. The resultant HFC membrane showed a high selectivity of divalent ion and monovalent ion. Salt rejections of MgSO4 and NaCl were 98.13 and 18.6% with the permeate flux of 32.6 and 40.2 L m?2 h?1 at 0.7 MPa, respectively. Field emission scanning electron microscopy images indicated that composite membrane prepared by TWC technique had a uniform active layer from the upper end to the bottom of the hollow fiber. And the salt rejection and permeate flux showed almost no difference between different membrane sections. Stability results suggested that good reproducibility could be obtained by TWC technique for the preparation of high‐performance HFC NF membrane. The resultant NF membrane showed a high removal rate of chemical oxygen demand and chroma of landfill leachate which were approximately 100%. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 41187.  相似文献   

19.
Poly(N,N‐dimethylaminoethyl methacrylate) (PDMAEMA) can be crosslinked by interfacial polymerization to develop a positively charged dense network structure. According to this mechanism, a positively charged hollow‐fiber composite nanofiltration (NF) membrane was prepared by quaternization to achieve a crosslinked PDMAEMA gel layer on the outer surface of polysulfone hollow‐fiber ultrafiltration (UF) membranes with a PDMAEMA aqueous solution as a coating solution and p‐xylylene dichloride as an agent. The preparation conditions, including the PDMAEMA concentration, content of additive in the coating solution, catalyzer, alkali, crosslinking temperature, and hollow‐fiber substrate membrane, were studied. Fourier transform infrared spectroscopy and scanning electron microscopy were used to characterize the structure of the membranes. This membrane had a rejection to inorganic salts in aqueous solution. The rejection of MgSO4 (2 g/L aqueous solution at 0.7 MPa and 25°C) was above 98%, and the flux was about 19.5 L m?2 h?1. Moreover, the composite NF membranes showed good stability in the water‐phase filtration process. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

20.
A new scheme has been developed to fabricate high‐performance forward osmosis (FO) membranes through the interfacial polymerization reaction on porous polymeric supports. p‐Phenylenediamine and 1,3,5‐trimesoylchloride were adopted as the monomers for the in‐situ polycondensation reaction to form a thin aromatic polyamide selective layer of 150 nm in thickness on the substrate surface, a lab‐made polyethersulfone (PES)/sulfonated polysulfone (SPSf)‐alloyed porous membrane with enhanced hydrophilicity. Under FO tests, the FO membrane achieved a higher water flux of 69.8 LMH when against deionized water and 25.2 LMH when against a model 3.5 wt % NaCl solution under 5.0 M NaCl as the draw solution in the pressure‐retarded osmosis mode. The PES/SPSf thin‐film‐composite (TFC)‐FO membrane has a smaller structural parameter S of 238 μm than those reported data. The morphology and topology of substrates and TFC‐FO membranes have been studied by means of atomic force microscopy and scanning electronic microscopy. © 2011 American Institute of Chemical Engineers AIChE J, 2012  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号