首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 0 毫秒
1.
Gas hold‐up and bubble size distribution in a slurry bubble column (SBC) were measured using the advanced noninvasive ultrafast electron beam X‐ray tomography technique. Experiments have been performed in a cylindrical column (DT = 0.07 m) with air and water as the gas and liquid phase and spherical glass particles (dP = 100 μm) as solids. The effects of solid concentration (0 ≤ Cs ≤ 0.36) and superficial gas velocity (0.02 ≤ UG ≤ 0.05 m/s) on the flow structure, radial gas hold‐up profile and approximate bubble size distribution at different column heights in a SBC were studied. Bubble coalescence regime was observed with addition of solid particles; however, at higher solid concentrations, larger bubble slugs were found to break‐up. The approximate bubble size distribution and radial gas hold‐up was found to be dependent on UG and Cs. The average bubble diameter calculated from the approximate bubble size distribution was increasing with increase of UG. The average gas hold‐up was calculated as a function of UG and agrees satisfactorily with previously published findings. The average gas hold‐up was also predicted as a function of Cs and agrees well for low Cs and disagrees for high Cs with findings of previous literature. © 2012 American Institute of Chemical Engineers AIChE J, 59: 1709–1722, 2013  相似文献   

2.
在内径为0.38 m的鼓泡塔中采用双电导探针法对不同通气速率下的气泡尺寸分布和局部气含率进行了实验研究,分析了气泡尺寸的概率密度分布。结果表明:气泡尺寸随轴向高度的增加而增大,随径向距离增加而减小;鼓泡塔中气液流动可分为过渡流域和充分发展流域,在过渡流域气含率随轴向高度增加而增大,在充分发展流域气含率趋于均值,径向局部气含率分布呈抛物线型下降。高气速下气泡尺寸概率密度分布比低气速下宽,且随轴向高度的增加分布变宽。  相似文献   

3.
Air-holdup and heat transfer coefficient data are reported for the air-water and air-water-sand system as a function of air velocity in the temperature range 297-343 K as measured in a 0.305 m diameter bubble column operating in semi-batch mode and equipped with either a five- or seven-tube bundle. A 65 μm average size sand powder is used at concentrations of 5 and 10 mass percent in the slurry. Available correlations of gas holdup and heat transfer coefficients are examined on the basis of these data. These are found inappropriate and inadequate for representing these experimental data. Gas holdup data are well represented by an approach based on Nicklin's (1962) work, and heat transfer data are adequately represented by a simple semi-empirical expression. Accurate experimental data on additional systems are needed to develop a reliable heat transfer theory particularly for process representation at temperatures higher than ambient.  相似文献   

4.
Sintering stress and bulk viscosity were derived as functions of relative density from microtomographic images in viscous sintering of glass particles. Three methods were proposed to estimate the sintering stress from relative density, specific surface area, and average of curvature on pore surface, which were directly measured by X‐ray microtomography. The surface energy method gave valid value in the final stage of sintering, while the mixed method gave better estimation in the intermediate stage. For the initial stage of sintering, the sintering stress was calculated from the average contact radius and the average coordination number observed by X‐ray microtomography. The sintering stress at the final stage increased in free sintering, but it decreased in constrained sintering due to pore coarsening. The bulk viscosity was calculated from the shrinkage rate and the sintering stress.  相似文献   

5.
We present experiments on a bubble train in a 23‐cm‐diameter fluidized bed of a Geldart B powder. The bubbles are injected via a single capillary inserted in the bed. We use our double X‐ray tomographic scanner to measure the solids distribution in two parallel cross sections of the bed. We report data for four different heights of the measuring planes above the capillary outlet. The velocity of individual bubbles is found from the time of flight from the lower to the upper plane. We have done separate calibration experiments for the velocity. In this article, we present data for the size and velocity of individual bubbles. From the bubble velocity, we could obtain the vertical dimension of the bubbles. This makes it possible to measure the volume of each bubble. The results show that our scanner is capable of measuring properties of bubbles with a size of 2.5 cm and above. © 2010 American Institute of Chemical Engineers AIChE J, 2011  相似文献   

6.
A planar cyclone is designed for visualizing bubbles in the cross‐section of a degassing hydrocyclone. The pressure distribution is studied through a series of experiments and Reynolds stress model simulations. The velocity distribution of the planar cyclone mostly exhibits the quasi‐forced vortex zone and boundary layer zone. The bubble dynamics are simulated using both Euler‐Euler and Euler‐Lagrange approaches, and the output is compared with the imaging results. The Euler‐Euler simulation provides more accurate predictions of the bubble trajectory. The histograms of residence time and traveling distance given by the Euler‐Lagrange approach exhibit a reasonably regular pattern. With higher values of the inlet Reynolds number, stronger forces acting on the bubbles lead to a decreased but more uniform residence time. © 2018 American Institute of Chemical Engineers AIChE J, 64: 2689–2701, 2018  相似文献   

7.
8.
Local gas hold‐up and bubbles size distributions have been modeled and validated against experimental data in a stirred gas–liquid reactor, considering two different spargers. An Eulerian multifluid approach coupled with a population balance model (PBM) has been employed to describe the evolution of the bubble size distribution due to break‐up and coalescence. The PBM has been solved by resorting to the quadrature method of moments, implemented through user defined functions in the commercial computational fluid dynamics code Fluent v. 6.2. To overcome divergence issues caused by moments corruption, due to numerical problems, a correction scheme for the moments has been implemented; simulation results prove that it plays a crucial role for the stability and the accuracy of the overall approach. Very good agreements between experimental data and simulations predictions are obtained, for a unique set of break‐up and coalescence kinetic constants, in a wide range of operating conditions. © 2009 American Institute of Chemical Engineers AIChE J, 2010  相似文献   

9.
Ca(OH)2 nanoparticles in hydro‐alcoholic dispersion (nanolime) are currently used for eco‐compatible treatments of carbonate‐based substrates in the field of Cultural Heritage conservation. Unfortunately, at present nanolime is synthesized by processes which present some drawbacks (considerable cost, multiple steps, low specific production yield), thus limiting the potential of its applications. We have developed a single‐step procedure, based on an ion exchange process, making it possible to produce pure and crystalline Ca(OH)2 nanoparticles easily in water, at room temperature and ambient pressure, starting from cheap or renewable reactants. The simplicity of the process and its time‐ and energy‐saving aspects are very promising factors for extending the production from laboratory to industrial scale. The aim of this paper is to investigate the structural and morphological features of the nanoparticles produced and to analyze the influence of crucial parameters of the synthesis process (i.e., time, water usage, reagent concentration and reaction volume) on the nanoparticles’ characteristics. The nanolime produced is investigated by XRD, FTIR, TEM, and AFM techniques. The nanoparticle reactivity in the carbonation process is also investigated, by varying the suspension concentration, the solvent and relative humidity conditions. Pure, crystalline, and very reactive Ca(OH)2 nanoparticles are obtained. The nanoparticles are constituted of thin lamellas, composed of primary hexagonal nanoparticles <10 nm, irrespective of time, water employed, reagents concentration, and reaction volume.  相似文献   

10.
Experiments involving a bubbling, gas‐fluidized bed with Gaussian and lognormal particle‐size distributions (PSDs) of Geldart Group B particles have been carried out, with a focus on bubble measurements. Previous work in the same systems indicated the degree of axial species segregation varies non‐monotonically with respect to the width of lognormal distributions. Given the widely accepted view of bubbles as “mixing agents,” the initial expectation was that bubble characteristics would be similarly non‐monotonic. Surprisingly, results show that measured bubble parameters (frequency, velocity, and chord length) increase monotonically with increasing width for all PSDs investigated. Closer inspection reveals a bubble‐less bottom region for the segregated systems, despite the bed being fully fluidized. More specifically, results indicate that, the larger the bubble‐less layer is, the more segregated the system becomes. The direct comparison between bubbling and segregation patterns performed provides a more complete physical picture of the link between the two phenomena. © 2011 American Institute of Chemical Engineers AIChE J, 2011  相似文献   

11.
This article reports on the influence of elevated pressure and catalyst particle lyophobicity at particle concentrations up to 3 vol % on the hydrodynamics and the gas‐to‐liquid mass transfer in a slurry bubble column. The study was done with demineralized water (aqueous phase) and Isopar‐M oil (organic phase) slurries in a 0.15 m internal diameter bubble column operated at pressures ranging from 0.1 to 1.3 MPa. The overall gas hold‐up, the flow regime transition point, the average large bubble diameter, and the centerline liquid velocity were measured along with the gas–liquid mass transfer coefficient. The gas hold‐up and the flow regime transition point are not influenced by the presence of lyophilic particles. Lyophobic particles shift the regime transition to a higher gas velocity and cause foam formation. Increasing operating pressure significantly increases the gas hold‐up and the regime transition velocity, irrespective of the particle lyophobicity. The gas–liquid mass transfer coefficient is proportional to the gas hold‐up for all investigated slurries and is not affected by the particle lyophobicity, the particle concentration, and the operating pressure. A correlation is presented to estimate the gas–liquid mass transfer coefficient as a function of the measured gas hold‐up: $k_{\rm l}a_{\rm l}/\varepsilon_{\rm g} = 3.0 \sqrt{Du_{\rm b}/d_{\rm b}^3}\;{\rm s}^{-1}$ . © 2009 American Institute of Chemical Engineers AIChE J, 2010  相似文献   

12.
The effect of the gas molecular size and its affinity to the pore surface on gas permeation properties through the ceramic membranes was studied by both the gas permeation experiments and gas permeation simulations using a nonequilibrium molecular dynamics (MD) technique. A modified gas permeation model equation based on the gas translation (GT) mechanism was presented. MD simulation revealed that the effective diffusion length in a micropore depended on the gas molecular size, and the pre‐exponential coefficient of a modified GT model equation showed good correlation with the kinetic diameter of the gas molecules. Also presented is a simple method to estimate the mean pore size of microporous membranes. The estimated pore sizes were consistent with observed kinetic diameter dependencies of gas permeance for real silica membranes. The pore size of a Deca‐Dodecasil 3R (DDR) zeolite membrane was also reasonably estimated at ~0.4 nm from the reported gas permeation data. © 2012 American Institute of Chemical Engineers AIChE J, 59: 2179–2194, 2013  相似文献   

13.
The present work provides a comparative study on the numerical solution of the dynamic population balance equation (PBE) for batch particulate processes undergoing simultaneous particle aggregation, growth and nucleation. The general PBE was numerically solved using three different techniques namely, the Galerkin on finite elements method (GFEM), the generalized method of moments (GMOM) and the stochastic Monte Carlo (MC) method. Numerical simulations were carried out over a wide range of variation of particle aggregation and growth rate models. The performance of the selected techniques was assessed in terms of their numerical accuracy and computational requirements. The numerical results revealed that, in general, the GFEM provides more accurate predictions of the particle size distribution (PSD) than the other two methods, however, at the expense of more computational effort and time. On the other hand, the GMOM yields very accurate predictions of selected moments of the distribution and has minimal computational requirements. However, its main disadvantage is related to its inherent difficulty in reconstructing the original distribution using a finite set of calculated moments. Finally, stochastic MC simulations can provide very accurate predictions of both PSD and its corresponding moments while the MC computational requirements are, in general, lower than those required for the GFEM.  相似文献   

14.
The evolution of alcohol fermentation in ten successive batches was analysed using three distinct media, all containing commercial sucrose as substrate. The first medium contained mineral salts and yeast extract, the second contained only soy flour as the nutrient source and the third only corn flour. The alcohol contents and yeast viabilities were determined during ten successive batches with each medium. There was no significant differentiation in ethanol yield during the total period of tests (60 h with each medium). However, the medium containing soy flour showed the best evolution of yeast viability. The best specific productivity of ethanol was obtained with the medium containing corn flour, which justifies the traditional and empirical use of the component in the fermentation step by the small producers of sugar cane spirits in Brazil.  相似文献   

15.
Mehdi Azadi  Fabrizio Scala 《Fuel》2011,90(3):1166-1171
Suspended particles are well known to cause serious problems in natural gas pipelines and related equipment. In this study, suspended particles in the natural gas transmission and distribution network of the city of Kerman, Iran were investigated. Particle concentration and size distribution were measured, under isokinetic condition, in different locations of the natural gas pipeline network. Additional particle characterization was carried out through SEM/EDX and XRD analysis. The filtration performance was found to be rather inefficient according to the particle concentration in the natural gas flow, although it decreased along the pipeline to the end of the network. Larger particles were more likely to exist at the network entrance with respect to the network pipeline exit. The results of particle characterization confirmed the presence of corrosion products in the suspended particles.  相似文献   

16.
While combining semiconductor and magnetic properties at the nanoscale provides dilute magnetic semiconductor (DMS) nanomaterials with a wide range of applications in next-generation electronic devices, tuning DMS properties still presents a challenge. Here, the synthesis of pure ZnO and transition metal (TM)-doped ZnO nanoparticles (NPs) with different magnetic (Fe and Co) and nonmagnetic (Mn) dopant concentrations (ranging from 2% to 10%) is reported using a co-precipitation method. Introducing the TM-dopants into ZnO NPs with 35?nm wurtzite structure causes crystallite and mean NP sizes to decrease, as characterized by X-ray diffraction and field-emission scanning electron microscopic analyses. Room-temperature magnetic measurements indicate coexistence of paramagnetic and ferromagnetic phases with tunability in the resulting TM-doped NPs. The maximum ferromagnetic coercivity and saturation magnetization are found to be 89?Oe and 0.074?emu/g for 10% Fe-doped ZnO NPs. UV–visible spectra showed a blue shift with increasing the dopant concentration, being in agreement with increasing trend in band gap energy calculated from band structure and density of state of TM-doped ZnO nanocrystal systems.  相似文献   

17.
Bis(2‐chloroethyl)ether, a nonvesicant and easy to handle chemical, was proposed as a model compound for the vesicant sulfur mustard (SM) in routine permeation testing of protective devices. The proposition was based on detailed studies on sorption of these chemicals in elastomers. From the sorption plots and permeation parameters, it was found that the model compound diffuses faster than SM, and the diffusion follows Fickian kinetics. Free volume models, such as those developed by Lee and Salame, together with solubility and thermodynamic interaction parameters, validated the observed sorption phenomenon and afforded a criterion for predicting the barrier properties of elastomers. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 77: 2472–2479, 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号