首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The excess molar volumes (VE) and the deviations in molar refraction (ΔR) at 298.15 K were determined for the binary systems {diisopropyl ether (DIPE) + 1‐propanol}, {Tert‐amyl methyl ether (TAME) + methanol}, {DIPE + trihexyltetradecylphosphonium bis(2,4,4‐trimethylpentyl)phosphinate ([P666,14][TMPP])}, {TAME + [P666,14][TMPP]}, {methanol + [P666,14][TMPP]} and {1‐propanol + [P666,14][TMPP]} using a digital vibrating‐tube densimeter and a precision digital refractometer. The VE and ΔR were correlated with the Redlich–Kister equation for binary systems. In addition, the ternary VE and ΔR data at 298.15 K were predicted for the ternary systems {DIPE + 1‐propanol + [P666,14][TMPP]} and {TAME + methanol + [P666,14][TMPP]} by using the binary contribution model of Radojkovi? with correlated sub‐binary Redlich–Kister parameters. © 2011 Canadian Society for Chemical Engineering  相似文献   

2.
BACKGROUND: Wholly aromatic polyamides (aramids) are high‐performance polymeric materials with outstanding heat resistance and excellent chemical stabilities due to chain stiffness and intermolecular hydrogen bonding of amide groups. Synthesis of structurally well‐designed monomers is an effective strategy to prepare modified forms of these aramids to overcome lack of organo‐solubility and processability limitations. RESULTS: A novel class of wholly aromatic polyamides was prepared from a new diamine, namely 2,2′‐bis(p‐phenoxyphenyl)‐4,4′‐diaminodiphenyl ether (PPAPE), and two simple aromatic dicarboxylic acids. Two reference polyamides were also prepared by reacting 4,4′‐diaminodiphenyl ether with the same comonomers under similar conditions. M?w and M?n of the resultant polymers were 8.0 × 104 and 5.5 × 104 g mol?1, respectively. Polymers resulting from PPAPE exhibited a nearly amorphous nature. These polyamides exhibited excellent organo‐solubility in a variety of polar solvents and possessed glass transition temperatures up to 200 °C. The 10% weight loss temperatures of these polymers were found to be up to 500 °C under a nitrogen atmosphere. The polymers obtained from PPAPE could be cast into transparent and flexible films from N,N‐dimethylacetamide solution. CONCLUSION: The results obtained show that the new PPAPE diamine can be considered as a good monomer to enhance the processability of its resultant aromatic polyamides while maintaining their high thermal stability. The observed characteristics of the polyamides obtained make them promising high‐performance polymeric materials. Copyright © 2009 Society of Chemical Industry  相似文献   

3.
A novel class of wholly aromatic poly(ester‐imide)s, having a biphenylene pendant group, with inherent viscosities of 0.32–0.49 dL g?1 was prepared by the diphenylchlorophosphate‐activated direct polyesterification of the preformed imide‐ring‐containing diacid, 4‐p‐biphenyl‐2,6‐bis(4‐trimellitimidophenyl)pyridine (1) with various aromatic dihydroxy compounds in the presence of pyridine and lithium chloride. A reference diacid, 2,6‐bis(trimellitimido)pyridine (2) without a biphenylene pendant group and two phenylene rings in the backbone, was also synthesized for comparison purposes. At first, with due attention to structural similarity and to compare the characterization data, a model compound (3) was synthesized by the reaction of compound 1 with two mole equivalents of phenol. Moreover, the optimum condition of polymerization reactions was obtained via a study of the model compound synthesis. All of the resulting polymers were characterized by Fourier transform infrared and 1H NMR spectroscopy and elemental analysis. The ultraviolet λmax values of the poly(ester‐imide)s were also determined. All of the resulting polymers exhibited excellent solubility in common organic solvents, such as pyridine, chloroform, tetrahydrofuran, and m‐cresol, as well as in polar organic solvents, such as N‐methyl‐2‐pyrrolidone, N,N‐dimethylacetamide, N,N‐dimethylformamide, and dimethyl sulfoxide. The crystalline nature of the polymers obtained was evaluated by means of wide‐angle X‐ray diffraction. The resulting poly(ester‐imide)s showed nearly an amorphous nature, except poly(ester‐imide) derived from 4,4′‐dihydroxy biphenyl. The glass transition temperatures (Tg) of the polymers determined by differential scanning calorimetry thermograms were in the range 298–342 °C. The 10% weight loss temperatures (T10%) from thermogravimetric analysis curves were found to be in the range 433–471 °C in nitrogen. Films of the polymers were also prepared by casting the solutions. Copyright © 2006 Society of Chemical Industry  相似文献   

4.
We report the preparation and characterization of doped polyaniline (PANI) in an ionic liquid 1‐butyl‐3‐methylimidazolium bis[trifluoromethyl(sulfonyl)]imide (BMImTFSI) medium. Aniline monomer was chemically polymerized via oxidation with KMnO4 in an ionic liquid BMImTFSI solution containing a monoprotic Brønsted acid bis[trifluoromethyl(sulfonyl)]imide (HTFSI). HTFSI is the source of proton that doped PANI. The identity of PANI as the reaction product was confirmed with both ultraviolet–visible and Fourier transform infrared spectra. Unlike syntheses in aqueous media, the doped PANI did not readily precipitate from the ionic liquid; a transparent and stable green solution‐like liquid dispersion was obtained (dispersion is used to refer the product hereafter). PANI precipitated when dedoped with organic bases such as triethylamine. The PANI precipitate can be redoped by HCl and the so‐doped PANI has conductivity of about 2.0 × 10?2 S/cm. The liquid dispersion of doped PANI in the ionic liquid can be diluted by many organic solvents or other ionic liquids to diluted “solutions.” © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

5.
Extractant impregnated resins (EIRs) were prepared by impregnation of Amberlite XAD‐7 with tetraalkylphosphonium chloride ionic liquid (IL). The EIRs were tested for the sorption of Hg(II) in HCl solutions. Mercury is bound on the EIR through an ion exchange mechanism involving chloroanionic species and the IL. The effect of HCl concentration and IL content is studied and the sorption isotherms are obtained in 1 M HCl solutions: the sorption capacity linearly increases with IL loading up to 100 mg Hg L?1. A little fraction of the IL immobilized on the resin (about 40 mg IL g?1) is tightly bound to the polymer limiting its reactivity with metal ions. The uptake kinetics are mainly controlled by intraparticle diffusion. At high IL loading the kinetics are slowed down, while the temperature has a limited impact. Nitric acid can be used for desorbing mercury and recycling the EIR for at least five cycles. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 41086.  相似文献   

6.
The elongational rheology of solutions of cellulose in the ionic liquid solvent 1‐butyl‐3‐methylimidazolium chloride ([Bmim]Cl) was measured at 80, 90, and 100°C; 8, 10, and 12 wt% cellulose; Hencky strains 5, 6, 7; and strain rates from 1 to 100 s?1. Master curves were generated by shifting the elongational viscosity curves with respect to temperature and Hencky strain. Also, general master curves were generated by simultaneously shifting with respect to both temperatures and Hencky strain. From the Arrhenius plots of the temperature shift factors, the activation energy for elongational flow was determined. The elongational rheology of these solutions was elongational strain rate thinning similar to that of their shear behavior and polymer melts and they were also strain hardening. Both effects and the viscosity increased with cellulose concentration. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

7.
A series of polyamides and poly(amide‐imide)s was prepared by direct polycondensation of ether and nitrile group containing aromatic diamines with aromatic dicarboxylic acids and bis(carboxyphthalimide)s respectively in N‐methyl 2‐pyrrolidone (NMP) using triphenyl phosphite and pyridine as condensing agents. New diamines, such as 2,6‐bis(4‐aminophenoxy)benzonitrile and 2,6‐bis(3‐aminophenoxy)benzonitrile, were prepared from 2,6‐dichlorobenzonitrile with 4‐aminophenol and 3‐aminophenol, respectively, in NMP using potassium carbonate. Bis(carboxyphthalimide)s were prepared from the reaction of trimellitic anhydride with various aromatic diamines in N,N′‐dimethyl formamide. The inherent viscosities of the resulting polymers were in the range of 0.27 to 0.93 dl g?1 in NMP and the glass transition temperatures were between 175 and 298 °C. All polymers were soluble in dipolar aprotic solvents such as dimethylsulfoxide, dimethylacetamide and NMP. All polymers were stable up to 350 °C with a char yield of above 40 % at 900 °C in nitrogen atmosphere. All polymers were found to be amorphous except the polyamide derived from isophthalic acid and the poly(amide‐imide)s derived from diaminodiphenylether and diaminobenzophenone based bis(carboxyphthalimide)s. Copyright © 2004 Society of Chemical Industry  相似文献   

8.
Thiol–ene photopolymerization was employed in order to prepare a series of covalently crosslinked bis(phosphonium)‐containing poly(ionic liquid) (PIL) networks. While the counteranion was held constant (NTf2), the structure of the bis(phosphonium)‐containing ‘ene’ monomer was varied in order to explore the breadth of thermal, mechanical and conductive properties available for this system. Towards this end, it was determined that more flexible spacers within the cationic monomer led to PIL networks with lower Tg values and higher conductivities. Most notable was a two‐ to three‐orders‐of‐magnitude increase in ionic conductivity (from 10?9 to 10?6 S cm?1 at 30 °C, 30% relative humidity) when the R group on phosphonium was changed from phenyl to isopropyl. Changing the functional group ratio to off‐stoichiometry also led to a slight increase in conductivity. Although the thermal stability (Td5%) of the phosphonium ionic liquid monomers was found to be significantly higher (>400 °C) than that of analogous imidazolium monomers, this improvement was not observed to directly transfer over to the polymer where a two‐step decomposition pathway was observed. The first step is attributed to the thiol monomer backbone while the second step correlates well with decomposition of the phosphonium portion of the PIL. © 2019 Society of Chemical Industry  相似文献   

9.
A series of new alternating aromatic poly(ester‐imide)s were prepared by the polycondensation of the preformed imide ring‐containing diacids, 2,2′‐bis(4‐trimellitimidophenoxy)biphenyl (2a) and 2,2′‐bis(4‐trimellitimidophenoxy)‐1,1′‐binaphthyl (2b) with various aromatic dihydroxy compounds in the presence of pyridine and lithium chloride. A model compound (3) was also prepared by the reaction of 2b with phenol, its synthesis permitting an optimization of polymerization conditions. Poly(ester‐imides) were fully characterized by FTIR, UV‐vis and NMR spectroscopy. Both biphenylene‐ and binaphthylene‐based poly(ester‐imide)s exhibited excellent solubility in common organic solvents such as tetrahydrofuran, m‐cresol, pyridine and dichloromethane. However, binaphthylene‐based poly(ester‐imide)s were more soluble than those of biphenylene‐based polymers in highly polar organic solvents, including N‐methyl‐2‐pyrrolidone, N,N‐dimethylacetamide, N,N‐dimethylformamide and dimethyl sulfoxide. From differential scanning calorimetry thermograms, the polymers showed glass‐transition temperatures between 261 and 315 °C. Thermal behaviour of the polymers obtained was characterized by thermogravimetric analysis, and the 10 % weight loss temperatures of the poly(ester‐imide)s was in the range 449–491 °C in nitrogen. Furthermore, crystallinity of the polymers was estimated by means of wide‐angle X‐ray diffraction. The resultant poly(ester‐imide)s exhibited nearly an amorphous nature, except poly(ester‐imide)s derived from hydroquinone and 4,4′‐dihydroxybiphenyl. In general, polymers containing binaphthyl units showed higher thermal stability but lower crystallinity than polymers containing biphenyl units. Copyright © 2005 Society of Chemical Industry  相似文献   

10.
A series of new aromatic poly(amide‐imide)s were synthesized by the triphenyl phosphite‐activated polycondensation of the diimide‐diacid, 1,4‐bis(trimellitimido)‐2,5‐dichlorobenzene (I), with various aromatic diamines in a medium consisting of N‐methyl‐2‐pyrrolidone (NMP), pyridine, and calcium chloride. The poly(amide‐imide)s had inherent viscosities of 0.88–1.27 dL g−1. The diimide‐diacid monomer (I) was prepared from 2,5‐dichloro‐p‐phenylenediamine with trimellitic anhydride. All the resulting polymers were amorphous and were readily soluble in a variety of organic solvents, including NMP and N,N‐dimethylacetamide. Transparent, flexible, and tough films of these polymers could be cast from N,N‐dimethylacetamide or NMP solutions. Cast films had tensile strengths ranging from 92 to 127 MPa, elongations at break from 4 to 24%, and initial moduli from 2.59 to 3.65 GPa. The glass transition temperatures of these polymers were in the range of 256°–317°C, and the 10% weight loss temperatures were above 430°C in nitrogen. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 73: 271–278, 1999  相似文献   

11.
Density (ρ), viscosity (η), and speed of ultrasound (U) (2 MHz) of pure solvents (chloroform, THF, and 1,4‐dioxane) and solutions of epoxy acrylate of 9,9′‐bis(4‐hydroxy phenyl) anthrone‐10 (EAAN) have been investigated at 303, 308, and 313 K. Specific acoustical impedance (Z), isentropic compressibility (κs), intermolecular free path length (Lf), classical absorption coefficient (α/f2)cl, and viscous relaxation time (τ) have been determined from ρ, η, and U data and are correlated with concentration. Z, (α/f2)cl, and τ increased with C and decreased with T, while κs and Lf decreased with C and increased with T in the solvent systems studied. A fairly good to excellent correlation between a given parameter and concentration is observed in solvent systems studied. Linear increase or decrease of acoustical parameters with concentration and temperature indicated existence of strong molecular interactions. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

12.
Recent years have witnessed the use of different ionic liquids for biomass processing, either at the level of lignocellulose pre‐treatment, to fractionate biomass in its main components, separating hemicellulose and lignin from cellulose, or directly in cellulose decrystallization by dissolving it in the ionic liquid and subsequent precipitation by adding anti‐solvents. Yet, most of the ILs employed in these strategies (e.g. imidazolium‐based solvents) are (still) expensive for such applications, and provide discussable ecological footprints. In an attempt to combine the highly useful generated knowledge with novel neoteric solvents with improved properties, economics, availability and ecology, several new trends have appeared in these areas during recent years. They comprise the use of switchable ILs, based on strong organic bases and CO2, the application of distillable ILs, as well as the use of bio‐based and low‐cost ILs and deep‐eutectic‐solvents (DES), e.g. choline chloride‐based derivatives. Apart from other emerging uses, for all these solvents some preliminary applications in biomass processing involving pretreatments, cellulose dissolution and other applications have been successfully reported. This Minireview contextualizes these recent trends and discusses them with emphasis on future use of them in biorefineries and biomass valorization. © 2013 Society of Chemical Industry  相似文献   

13.
Indoles react smoothly with carbonyl compounds in 1‐butyl‐3‐methylimidazolium tetrafluoroborate ([bmim]BF4) or 1‐butyl‐3‐methylimidazolium hexafluorophosphate ([bmim]PF6) ionic liquids under mild reaction conditions to afford the corresponding bis‐indolylmethanes in excellent yields. These ionic liquids can be recovered and recycled in subsequent reactions without any apparent loss of activity.  相似文献   

14.
Poly(ε‐caprolactone) (PCL) was melt compounded with “Bucky gels”‐like mixture that prepared by grinding multiwalled carbon nanotubes (MWNTs) and ionic liquids (ILs). Raman spectrum showed the significant interaction between ILs and MWNTs. The dielectric behavior of PCL nanocomposites based on unmodified and IL‐modified MWNTs was studied from 40 Hz to 30 MHz. The addition of ILs significantly enhanced the dielectric property of PCL/IL/MWNT ternary nanocomposites, which was much higher than that of the sum of PCL/IL with PCL/MWNT binary nanocomposites. The dielectric properties of PCL/IL/MWNT nanocomposites were mainly influenced by ILs in low frequency and were dominated by MWNTs in high frequency. SEM results revealed that a more uniform and fine dispersion of MWNTs were achieved throughout the PCL matrix because of ILs. The addition of ILs in nanocomposites changed the crystallinity of PCL. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40231.  相似文献   

15.
The availability of alginate gels enclosing Cyanex 302 [bis(2,4,4‐trimethylpentyl)thiophosphinic acid] for the uptake of cadmium and copper from highly concentrated solutions of industrial phosphoric acid wet process phosphoric acid (WPA)] was studied. For this purpose, beads of alginate gels enclosing microdrops of kerosene solutions of the industrial extractant Cyanex 302 at different concentrations were prepared. The experimental procedure gives rise to a composite bead in which alginate is the continuous phase and the organic extractant forms the discrete homogeneously distributed phase within the bead. The equilibrium in this three‐phase system (phosphoric acid–extractant solution–alginate gel) was modelled in terms of the corresponding distribution factors, the main chemical reactions and their equilibrium constants. Retention isotherms of both metal ions were obtained experimentally at four concentrations (1.0, 2.5, 5.0 and 7.5 mol L?1) of pure phosphoric acid. High metal removal efficiency, due to liquid–liquid extraction processes, was observed even in the most acidic conditions. High values of the extraction constants were estimated, with the distribution coefficients between aqueous and alginate phase being near unity. Finally, the results obtained with industrial WPA are in close agreement with those predicted by the physicochemical model developed in synthetic media. Copyright © 2006 Society of Chemical Industry  相似文献   

16.
Copolyimide derivatives were prepared from two carboxylic dianhydrides [3,3′,4,4′‐benzophenone tetracarboxylic dianhydride (BTDA) and pyromellitic anhydride (PMDA)] and a single diamine (bis[4‐(3‐aminophenoxy)phenyl]sulfone [BAPS]) following one‐step polymerization. Copolymers could be arranged in sequence through different molar ratios of dianhydride compounds. These polymers were characterized by viscosity, thermal and mechanical properties, solubility, etc. To understand the behavior of the properties, according to the ratio of the dianhydride compound, a copolymer having various properties could be obtained. Further, it was proved that their properties could be determined from the compositions. The solubility of copolyimides with a large molecular weight was moderately improved. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 88: 853–859, 2003  相似文献   

17.
A new monomer 1,1‐bis(4‐amino‐3‐mercaptophenyl)‐4‐tert‐butylcyclohexane dihydrochloride, bearing the bulky pendant 4‐tert‐butylcyclohexylidene group, was synthesized from 4‐tert‐butylcyclohexanone in three steps. Its chemical structure was characterized by 1H NMR, 13C NMR, MS, FTIR, and EA. Aromatic poly(bisbenzothiazole)s (PBTs V) were prepared from the new monomer and five aromatic dicarboxylic acids by direct polycondensation. The inherent viscosities were in the range of 0.63–2.17 dL/g. These polymers exhibited good solubility and thermal stability. Most of the prepared PBTs V were soluble in various polar solvents. Thermogravimetric analysis showed the decomposition temperatures at 10% weight loss that were in the range of 495–534°C in nitrogen. All the PBTs V, characterized by X‐ray diffraction, were amorphous. The UV absorption spectra of PBTs V showed a range of λmax from 334 to 394 nm. All the PBTs V prepared had evident fluorescence emission peaks, ranging from 423 to 475 nm with different intensity. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 2000–2008, 2006  相似文献   

18.
A series of novel ternary‐copolymer of fluorinated polyimides (PIs) were prepared from 1,4‐bis(4‐amino‐2‐trifluoromethylphenoxy)benzene (pBATB), commercially available aromatic dianhydrides, and aromatic diamines via a conventional two‐step thermal or chemical imidization method. The structures of all the obtained PIs were characterized with FTIR, 1H‐NMR, and element analysis. Besides, the solubility, thermal stability, mechanical properties, and moisture uptakes of the PIs were investigated. The weight‐average molecular weight (Mw) and the number‐average molecular weight (Mn) of the PIs were determined using gel‐permeation chromatography (GPC). The PIs were readily dissolved not only in polar solvents such as DMF, DMAc, and NMP, but also in some common organic solvents, such as acetic ester, chloroform, and acetone. The glass transition temperatures of these PIs ranged from 201 to 234°C and the 10% weight loss temperatures ranged from 507 to 541°C in nitrogen. Meanwhile, all the PIs left around 50% residual even at 800°C in nitrogen. The GPC results indicated that the PIs possessed moderate‐to‐high number‐average molecular weight (Mn), ranging from 9609 to 17,628. Moreover, the polymer films exhibited good mechanical properties, with elongations at break of 8–21%, tensile strength of 66.5–89.8 MPa, and Young's modulus of 1.04–1.27 GPa, and low moisture uptakes of 0.54–1.13%. These excellent combination properties ensure that the polymer could be considered as potential candidates for photoelectric and microelectronic applications. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

19.
A new facile and rapid polycondensation reaction of 4,4′‐(hexafluoroisopropylidene)‐N,N′‐bis(phthaloyl‐L ‐leucine) diacid chloride (1) with several aromatic diols such as phenol phthalein (2a), bis phenol‐A (2b), 4,4′‐hydroquinone (2c), 1,4‐dihydroxyanthraquinone (2d), 1,8‐dihydroxyanthraquinone (2e), 1,5‐dihydroxy naphthalene (2f), dihydroxy biphenyl (2g), and 2,4‐dihydroxyacetophenone (2h) was performed by using a domestic microwave oven in the presence of a small amount of a polar organic medium such as o‐cresol. The polymerization reactions proceeded rapidly, compared with the conventional solution polycondensation, and was completed within 10 min, producing a series of optically active poly(ester‐imide)s with quantitative yield and high inherent viscosity of 0.50–1.12 dL/g. All of the above polymers were fully characterized by IR, elemental analyses, and specific rotation. Some structural characterization and physical properties of this optically active poly(ester‐imide)s are reported. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 77: 3003–3009, 2000  相似文献   

20.
The dilute solution properties of poly(2,6-diisopropylphenyl methacrylate) (PDPP) in various solvents were studied by viscosity, exclusion chromatography and osmotic pressure measurements. The Mark-Houwink-Kuhn-Sakurada relationships were established. The unperturbed dimensions, the rigidity factor σ, the characteristic ratio C∞ and the thermodynamic parameters were determined using the Stockmayer-Fixman equation and from data in theta solvent (binary mixture). The rigidity factor of PDPP is abnormally high. The conformational behaviour of this polymer is analysed in terms of the effect of the side chain structure. The results are compared with other polymers of the same series.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号