首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Catalytic ozone decomposition reaction was used to study the performance of a 76 mm i.d. and 5.8 m high gas–solid circulating fluidized bed (CFB) downer reactor. Optical fiber probes and an ultraviolet (UV) ozone analyzer were used to obtain comprehensive information about local solids holdup and ozone concentration profiles at different axial and radial positions at superficial gas velocity of 2–5 m/s and solids circulation rates of 50 and 100 kg/m2 s. Axial ozone concentration profiles significantly deviated from the plug-flow behavior, with most conversion occurring in the entrance region or flow developing zone of the downer reactor. Strong correlation was observed between the spatial distributions of solids and extent of reaction; higher local solids holdups cause lower ozone concentrations due to higher reaction rates. Radial gradients of the reactant (ozone) concentrations increased in the middle section of the downer, and decreased with increasing superficial gas velocity and solids circulation rate. Contact efficiency, a measure of the interaction between gas and solids indicated high efficiency in the flow developing zone and decreased with height in the fully developed region.  相似文献   

2.
A mathematical model based on the distinct element method (DEM) was developed to investigate the hydrodynamics in a gas-solid down-flow circulating fluidized bed reactor (downer). The models consist of the equations of particle motion and fluid motion. The contact force is calculated by using the analogy of a spring, dashpot, and friction slider. Simulation results show that the radial solids holdup and particle velocity profiles are uniform in the core region. Near the wall, the solids holdup is higher with lower particle velocity. An increase in the particle size decreases the solids holdup and increases the particle velocity. The solids holdup decreases with superficial gas velocity but increases with solids circulation rate. Particle velocity increases with gas velocity and solids circulation rate. The solids holdup and particle velocity are almost uniform along the height of the downer except near the distributor. The hydrodynamic behavior from this simulation showed trends similar to those of the experimental results. The results obtained from this model fit better with the experimental results than Kimm's and Bolkan's models do.  相似文献   

3.
在较宽的操作条件范围内系统测试了下行床床层压力降,获得气固两相流与管内壁间的摩擦压降,提出了下行气固两相流与管壁间摩擦压降的计算模型。结果表明,在下行床的充分发展段,气固两相流与管壁间的摩擦导致表观颗粒浓度显著小于真实颗粒浓度;当表观气速大于8 m·s-1时,气固两相流与管壁间的摩擦压降接近甚至超过气固两相流重力产生的静压降。在采用压差法测试下行床中的平均颗粒浓度时,如忽略气固两相流与管壁间的摩擦,则可能导致显著的偏差。下行气固两相流与管内壁间的摩擦压降主要来自于颗粒与管壁间的摩擦。颗粒直径对气固两相流与管壁间摩擦压降的影响随着操作气速的提高逐渐减弱。采用提出的摩擦压降模型对表观颗粒浓度进行修正后,预测值与实验值吻合较好。  相似文献   

4.
Z.Q Li  C.N Wu  F Wei  Y Jin 《Powder Technology》2004,139(3):214-220
Experiments were carried out in a specially designed high-density coupled circulating fluidized bed system. Fluidized catalytic cracking (FCC) particles (ρp=1300 kg/m3, dp=69 μm) were used. When the solids circulation flux is 400 kg/m2·s, the apparent solids holdup exceeds 20% near the top of the riser A, and the volumetric solids fraction (apparent solids holdup) is larger than 5.2% in the fully developed region of the downer. Hence, a high particle suspension density covers the entire coupled CFB system. Under the high-density conditions, the primary air rate had a small influence on the solids circulation flux, while the secondary air rate had an important effect on it. The results indicate a particle acceleration region and a fully developed region were identified along the downer from the pressure gradient profiles. In the fully developed region of the downer, the volumetric solids fraction increases with increasing solids circulation flux or decreasing superficial gas velocity U1.  相似文献   

5.
重质油高效转化和优化利用是国民经济发展的重大需求,具有十分重要的现实意义和战略意义。提升管催化裂化一直是重油轻质化的重要手段,但提升管的不均匀环核结构及气固返混特性降低了重油转化率和产品选择性。相对于提升管,下行床具有近平推流流型及气固短停留时间的优点,处理重油具有潜在优势。但下行床内颗粒浓度过低且气固初始接触较差限制其推广及应用。本文综述了提高下行床颗粒浓度及改善颗粒初始分布的相关文章,指出了深入研究下行床的颗粒增浓机制及气固初始混合可以丰富下行床的基础研究并推动其工业应用。  相似文献   

6.
Comparison of flow development in high density downer and riser reactors is experimentally investigated using fluid catalytic cracking particles with very high solids circulation rate up to 700 kg/m2s for the first time. Results show that both axial and radial flow structures are more uniform in downers compared to riser reactors even at very high density conditions, although the solids distribution becomes less uniform in the high density downer. Solids acceleration is much faster in the downer compared to the riser reactor indicating a shorter length of flow development and residence time, which is beneficial to the chemical reactions requiring short contact time and high product selectivity. Slip velocity in risers and downers is also first compared at high density conditions. The slip velocity in the downer is much smaller than in the riser for the same solids holdup indicating less particle aggregation and better gas‐solids contacting in the downer reactors. © 2015 American Institute of Chemical Engineers AIChE J, 61: 1172–1183, 2015  相似文献   

7.
The hydrodynamics of an annulus airlift reactor (AALR) was studied and compared with that of a slurry bubble column reactor (SBCR) with silica sands of 75-125 μm in size as solids, city tapping water as liquid phase, and air as gas phase in the present investigation. The effects of superficial gas velocity and solids concentration on gas holdup and solids distributions were investigated. The results showed that the local average gas holdup decreased along the column height, and the average gas holdup decreased with the increasing solids concentration, but this tendency became less at higher solids concentrations. It was found that the effect of superficial gas velocity on axial solids distribution was negligible over the gas velocity range investigated, as long as the solids in the column could be suspended. Increasing solids concentration led to flatter axial solids holdup profiles. The axial distributions of solids concentration and gas holdup in the AALR were much more uniform than those in the SBCR, and slurry circulation in the AALR damped the effects of increasing solids concentration on the hydrodynamics. These advantages of an AALR over a SBCR are especially important for some catalytic reaction processes in three-phase systems such as Fischer-Tropsch synthesis and methanol synthesis.  相似文献   

8.
以臭氧催化分解为模型反应,对气固并流下行循环流化床反应器中气固传质与反应特性进行了研究. 制备了臭氧分解催化剂,并以它为循环物料在内径0.09 m、高度8.2 m的下行床中测定了颗粒浓度分布和臭氧浓度分布. 实验结果表明,臭氧在加速段分解率在45%左右,约占总分解率的90%,其随颗粒循环量(Gs)的增加略有上升. 当Gs从2.77 kg/(m2×s)增加到6.58 kg/(m2×s)时,全床分解率从50%上升至55%. 建立了平推流的传质模型,给出了有效传质系数和操作参数的关联式.  相似文献   

9.
In order to study the system hydrodynamics in a circulating fluidized bed (CFB), a 3D full‐loop simulation was conducted for a pilot‐scale CFB. The Eulerian‐Eulerian two‐fluid model with the kinetic theory of granular theory helped to simulate the gas‐solids flow in the CFB. The system hydrodynamics including pressure balance, vectors of gas and solids, distribution of solids holdup, and instantaneous circulating rates were obtained to get a comprehensive understanding of the system. It was predicted that the main driving force was the pressure drop of the storage tank. The storage height and valve opening were critical operating factors to control the riser operation. The effects of operating conditions including solids circulating rates and superficial gas velocity on the hydrodynamics were investigated to provide guidance for the stable operation of the CFB system.  相似文献   

10.
Multiphase flow hydrodynamics in a novel gas–liquid–solid jet-loop reactor (JLR) were experimentally investigated at the macroscales and mesoscales. The chord length distribution was measured by an optical fiber probe and transformed for bubble size distribution through the maximum entropy method. The impacts of key operating conditions (superficial gas and liquid velocity, solid loading) on hydrodynamics at different axial and radial locations were comprehensively investigated. JLR was found to have good solid suspension ability owing to the internal circulation of bubbles and liquid flow. The gas holdup, axial liquid velocity, and bubble velocity increase with gas velocity, while liquid velocity has little influence on them. Compared with the gas–liquid JLRs, solids decrease the gas holdup and liquid circulation, reduces the bubble velocity and delays the flow development due to the enhanced interaction between bubbles and particles (Stokes number >1). This work also provides a benchmark data for computational fluid dynamics (CFD) model validation. © 2019 American Institute of Chemical Engineers AIChE J, 65: e16537, 2019  相似文献   

11.
Local hydrodynamics of a gas–liquid–solid system,such as bubble circulation regime,gas holdup,liquid velocity and axial profile of solid concentration,are studied in a two-stage internal loop airlift reactor.Empirical correlations for gas holdup and liquid velocity are proposed to ease the reactor design and scale-up.Different bubble circulation regimes were displayed in the first(lower) and second(upper) stages.Increasing superficial gas velocity and solid loading can promote regime transition of the second stage,and the gas holdup of the second stage is higher than that of the lower stage.In addition,the effects of solid loading on bubble behaviour are experimentally investigated for each stage.It is found that bubble size in the downcomer decreases with the presence of solid particles,and bubble size distribution widens under higher superficial gas velocity and lower solid loading.  相似文献   

12.
The hydrodynamic behavior of an external loop airlift slurry reactor (ALSR) with and without a resistance-regulating element was studied with a fiber optic probe and ultrasound Doppler velocimetry. The influences of the superficial gas velocity and solid holdup on the global gas holdup and radial profiles of the suspension circulation velocity in the downer and of gas holdup, bubble size, and bubble rise velocity in the riser were studied. Local measurements allow a better understanding of the flow behavior in the reactor and can be used for CFD modeling and validation. Experimental results show that the resistance-regulating element increases the gas holdup and decreases the suspension circulation velocity, indicating that an optimum design of the flow resistance is needed to obtain the maximum gas-liquid volumetric mass transfer coefficient for a specific superficial gas velocity. A high superficial gas velocity and low solid holdup are favorable for increased uniformity of the radial profile of the gas holdup and bubble rise velocity. Hydrodynamic models that predict the gas holdup and suspension circulation velocity were developed for an ALSR with and without a resistance-regulating element. Good agreement was obtained between measured and predicted values.  相似文献   

13.
The hydrodynamic behavior of an external loop airlift slurry reactor (ALSR) with and without a resistance-regulating element was studied with a fiber optic probe and ultrasound Doppler velocimetry. The influences of the superficial gas velocity and solid holdup on the global gas holdup and radial profiles of the suspension circulation velocity in the downer and of gas holdup, bubble size, and bubble rise velocity in the riser were studied. Local measurements allow a better understanding of the flow behavior in the reactor and can be used for CFD modeling and validation. Experimental results show that the resistance-regulating element increases the gas holdup and decreases the suspension circulation velocity, indicating that an optimum design of the flow resistance is needed to obtain the maximum gas-liquid volumetric mass transfer coefficient for a specific superficial gas velocity. A high superficial gas velocity and low solid holdup are favorable for increased uniformity of the radial profile of the gas holdup and bubble rise velocity. Hydrodynamic models that predict the gas holdup and suspension circulation velocity were developed for an ALSR with and without a resistance-regulating element. Good agreement was obtained between measured and predicted values.  相似文献   

14.
The promoting effect of ultrasonic wave on the hydrodynamics and mass transfer characteristics of the loop airlift reactor was studied. The gas holdup, liquid circulation velocity, mixing time and overall volumetric mass transfer coefficient were examined and compared, with and without ultrasonic wave in the reactor. The experimental results show that ultrasound has almost no notable effect on the gas holdup, but has a tendency to decrease gradually the liquid circulation velocity and increase the overall volumetric mass transfer coefficient; and the effect on the mixing time is relatively complex. At low superficial gas velocity, the low powered ultrasound promotes the radial mixing of fluid; with the ultrasonic power increasing, ultrasonic vibration obstructs the axial mixing of fluid. Moreover, the effect of ultrasonic wave on the mixing time gradually decreases with the increase in the superficial gas velocity. Therefore there exists an optimal ultrasonic power for hydrodynamics and mass transfer. Correlations were also proposed for the hydrodynamics and mass transfer characteristics of the reactor.  相似文献   

15.
The flow behaviors in the downer of a large-scale triple-bed circulating fluidized bed (TBCFB) gasifier cold model, which is composed of a downer (Φ 0.1 m×6.5 m), a bubbling fluidized bed (BFB, 0.75×0.27×3.4 m3), a riser (Φ 0.1 m×16.6 m) and a gas-sealing bed (GSB, Φ 0.158 m×5 m), were investigated. Sand particles with a density of 2600 kg/m3 and an average particle size of 128 μm were used as bed materials. Solids mass fluxes were in the range 113–524 kg/m2 s. Average solids holdup in the developed region of the downer increased with increasing solids mass flux. The gas seal between the riser and the downer had a large effect on the solids holdup distribution in the downer. Compared with the solids holdup in the riser, a relatively low solids holdup was formed in the downer even at high solids loadings. A pressure balance model was set up to predict the solids mass flux for this TBCFB system. It was found that the static bed height in the GSB had a great effect on the solids mass flux. The possibilities of achieving a high density solids holdup in a downer were discussed.  相似文献   

16.
三重环流生物流化床的流体力学与传质特性   总被引:15,自引:1,他引:14  
从气相含率,液体循环速度和体积氧传质系数方面研究自行设计新型结构的三重环流生物流化床的流体力学与传质特性。流化床反应器的有效体积23L,实验条件是以空气为气相,水为液相,树脂为固相,固含率分别为0%,3%,6%和9%。实验结果表明,气相含率是影响反应器流体力学和传质特性的主要因素,气相含率增大可降低液体循环速度,增大体积氧传质系数。  相似文献   

17.
The gasification of two different coals and chars with CO2 and CO2/O2 mixture in a 48-mm-i.d. circulating fluidized bed (CFB) gasifier is investigated. The effects of operation condition on gas composition, carbon conversion and gasification efficiency were studied. A simple CFB coal gasification district mathematical model has been set up. The effects of coal type and CFB operating conditions on CFB coal gasification are discussed based on the CFB gasification test and model simulation. The main operation parameters in CFB gasification system are coal type, gas superficial velocity, circulating rate of solids and reaction temperature. It is found that CO concentration and carbon conversion increase with increasing solids circulating rate and decreasing gas velocity due to the increase in gas residence time and solids holdup in the CFB. The carbon conversion increases with increasing temperature and O2 concentration in the inlet gas. The experimental results prove that the CFB gasifier works well for high volatile, high reactivity coal.  相似文献   

18.
连续内环流三相反应器局部流动特性   总被引:3,自引:1,他引:2       下载免费PDF全文
李红星  黄海  谷奎庆  刘辉  李建伟  李成岳 《化工学报》2007,58(10):2493-2499
在φ200 mm×2500 mm连续内环流三相反应器内,考察了空气 水 玻璃珠体系反应器内局部流动参数随操作条件的变化规律。结果表明,导流筒内截面平均气含率随表观气速的增大而增大,较之气液两相流,在低固含率时,加入固体对气含率影响不明显,而在较高固含率下,气含率有明显降低,但固体再增加时对气含率变化影响不大。在较低表观气速下,进料浆速对导流筒内气含率轴向分布趋势有一定的影响,但在较高表观气速下影响不大,导流筒内的气含率大于环隙内的气含率且随气速增大差别更加明显,浆相连续有利于气相分散并增大环隙内的气含率。导流筒内循环浆速径向分布呈抛物状,中心高、近壁处低,受进料浆速和入口固含率影响都不大。浆相循环强度最低为20,高可达180。固含率轴、径向分布受表观气速和进料浆速的影响,固含率轴、径向分布基本均匀,随进料浆速增加,反应器内固含率降低。  相似文献   

19.
孙光  蒋国祥  刘新华  孙国刚  许光文 《化工学报》2008,59(11):2774-2780
密相输送床气化和双流化床气化是基于循环型流化床反应器发展起来的两种新型煤和生物质气化技术,根据这两种技术对流动的要求,提出了在循环流化床的下行床底部耦合一段移动床,为输送床内的流动提供足够高的驱动压力而提高颗粒循环量的技术思想。在根据该思想而建立的直径90 mm的输送床实验装置上的实验研究表明,利用所提出的床型构造可在表观气速9.6 m•s-1下实现400 kg•m-2•s-1的颗粒循环量。输送床的一次风速和移动床松动风速是影响颗粒循环量和输送床内颗粒浓度的主要因素,但循环量随输送床一次风速的增大而增加的走势弱于普通循环流化床。移动床松动风速在小于颗粒最小流化速度的范围内轻微变动即可显著改变颗粒循环量和输送床内颗粒浓度。在保持输送床总气速不变的前提下,通过二次风可在40%的比例范围内调节颗粒循环量,且调节作用随二次风位置的增高而减弱。  相似文献   

20.
The axial profiles of cross‐sectional average solids holdup profiles were studied in two 10 m long, 76 mm i. d. and 203 mm i. d. risers with the solids circulation rate up to 550 kg/m2s, superficial gas velocities up to 10.0 m/s, and solids inventory up to 410 kg in the 320 mm i. d. storage tank. The shape of the axial profiles of the cross‐sectional average solids holdup changes with solids fluxes. Under high‐flux conditions, the shapes of the profiles are quite different from those under low‐flux conditions. It is clear that solids holdup increases with the increase of solids fluxes. While the superficial gas velocities have no obvious influence on the shape of the axial profiles of the cross‐sectional average solids holdup under given solids flux for both risers, solids holdup decreases with the increase of superficial gas velocity under all solids inventories. The solids inventory and riser diameter have little influence on the shape of the profile, but the solids holdup is higher with larger bed diameter and/or larger solids inventory. Meanwhile, the solids inventory and riser diameter have important influence on the maximum value of operating solids fluxes of the system. The maximum of solids fluxes increases with the increase of solids inventory, and decreases with the increase of riser diameter.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号