首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 405 毫秒
1.
A novel mass‐transfer intensified approach for CO2 capture with ionic liquids (ILs) using rotating packed bed (RPB) reactor was presented. This new approach combined the advantages of RPB as a high mass‐transfer intensification device for viscous system and IL as a novel, environmentally benign CO2 capture media with high thermal stability and extremely low volatility. Amino‐functionalized IL (2‐hydroxyethyl)‐trimethyl‐ammonium (S)?2‐pyrrolidinecarboxylic acid salt ([Choline][Pro]) was synthesized to perform experimental examination of CO2 capture by chemical absorption. In RPB, it took only 0.2 s to reach 0.2 mol CO2/mol IL at 293 K, indicating that RPB was kinetically favorable to absorption of CO2 in IL because of its efficient mass‐transfer intensification. The effects of operation parameters on CO2 removal efficiency and IL absorbent capacity were studied. In addition, a model based on penetration theory was proposed to explore the mechanism of gas–liquid mass transfer of ILs system in RPB. © 2013 American Institute of Chemical Engineers AIChE J, 59: 2957–2965, 2013  相似文献   

2.
《分离科学与技术》2012,47(16):3537-3554
Abstract

Carbon dioxide was absorbed into the aqueous xanthan gum (XG) solution in the range of 0–0.151 wt% containing monoethanolamine (MEA) of 0–2 kmol/m3 in a flat‐stirred vessel with the impeller of 0.05 m and agitation speed of 50 rpm at 25°C and 0.101 MPa to measure the absorption rate of CO2. The volumetric liquid‐side mass transfer coefficient (kLaL) of CO2 decreased with increasing XG concentration, and was correlated with the empirical formula having the rheological behavior of XG solution. The chemical absorption rate of CO2 was estimated by the film theory using the values of kLaL and physicochemical properties of CO2 and MEA. The aqueous XG solutions made the rate of absorption of CO2 accelerated compared with the Newtonian liquid based on the same viscosity of the solution.  相似文献   

3.
《分离科学与技术》2012,47(16):3261-3275
Abstract

Carbon dioxide was absorbed into aqueous polyethylene oxide (PEO) solution containing monoethanolamine (MEA) in a flat‐stirred vessel to investigate the effect of non‐Newtonian rheological behavior of PEO on the rate of chemical absorption of CO2, where the reaction between CO2 and MEA was assumed to be a first‐order reaction with respect to the molar concentration of CO2 and MEA, respectively. The liquid‐side mass transfer coefficient (kL), which was obtained from the dimensionless empirical equation containing the properties of viscoelasticity of the non‐Newtonian liquid, was used to estimate the enhancement factor due to chemical reaction. PEO with elastic property of non‐Newtonian liquid made the rate of chemical absorption of CO2 accelerate compared with Newtonian liquid based on the same viscosity of the solution.  相似文献   

4.
The effects of surfactant contaminations and activated carbon addition on physical gas absorption, and absorption with fast and instantaneous reaction (sulphite oxidation, carbon dioxide absorption into sodium hydroxide and monoethanol amine (MEA) solutions) have been studied in a stirred cell with a flat gas/liquid interface. Surfactants significantly decrease the liquid-side mass transfer coefficient kL even at very small concentrations. The surfactants can be removed by adsorption onto activated carbon (“surfactant grazing”).In absorption with fast chemical reaction of the gas (sulphite oxidation), the liquid side mass transfer coefficient kL has no effect on the absorption rate and, consequently, there are no effects of surfactant and activated carbon. CO2 absorption into sodium hydroxide solution may occur in the instantaneous absorption regime; then, any change in kL causes a proportional change in the absorption rate. In CO2 absorption into MEA solution, however, in the instantaneous regime, much stronger effects of surfactant and of its removal by activated carbon are observed. It is suggested that in the absence of surfactants surface convection (Marangoni instability) may occur in MEA solutions.  相似文献   

5.
《Chemical engineering science》2001,56(21-22):6217-6224
This work presents an investigation of CO2 absorption into aqueous blends of methyldiethanolamine (MDEA) and monoethanolamine (MEA), as well as 2-amino-2-methyl-1-propanol (AMP) and monoethanolamine (MEA). The combined mass transfer–reaction kinetics–equilibrium model to describe CO2 absorption into the amine blends has been developed according to Higbie's penetration theory following the work of Hagewiesche et al. (Chem. Eng. Sci. 50 (1995) 1071). The model predictions have been found to be in good agreement with the experimental rates of absorption of CO2 into (MDEA+MEA+H2O) of this work and into (AMP+MEA+H2O) reported by Xiao et al. (Chem. Eng. Sci. 55 (2000) 161), measured at higher contact times using wetted wall contactor. The good agreement between the model predicted rates and enhancement factors and the experimental results indicate that the combined mass transfer–reaction kinetics–equilibrium model with the appropriate use of model parameters can effectively represent CO2 mass transfer for the aqueous amine blends MDEA/MEA and AMP/MEA.  相似文献   

6.
To promote the development of ionic liquid (IL) immobilized sorbents and supported IL membranes (SILMs) for CO2 separation, the kinetics of CO2 absorption/desorption in IL immobilized sorbents was studied using a novel method based on nonequilibrium thermodynamics. It shows that the apparent chemical‐potential‐based mass‐transfer coefficients of CO2 were in three regions with three‐order difference in magnitude for the IL‐film thicknesses in microscale, 100 nm‐scale, and 10 nm‐scale. Using a diffusion‐reaction theory, it is found that by tailoring the IL‐film thickness from microscale to nanoscale, the process was altered from diffusion‐control to reaction‐control, revealing the inherent mechanism for the dramatic rate enhancement. The extension to SILMs shows that the significant improvement of CO2 flux can be obtained theoretically for the membranes with nanoscale IL‐films, which makes it feasible to implement CO2 separation by ILs with low investment cost. © 2015 American Institute of Chemical Engineers AIChE J, 61: 4437–4444, 2015  相似文献   

7.
Given their unique and tunable properties as solvents, ionic liquids (ILs) have become a favorable solvent option in separation processes, particularly for capturing carbon dioxide (CO2). In this work, a simple method that can be used to screen the suitable IL candidates was implemented in our modified gas–liquid membrane contactor system. Solubilities, selectivities of CO2, nitrogen (N2), and oxygen (O2) gases in imidazolium-based ILs and its activity coefficients in water and monoethanolamine (MEA) were predicted using conductor-like screening model for real solvent (COSMO-RS) method over a wide range of temperature (298.15–348.15?K). Results from the analysis revealed that [emim] [NTf2] IL is a good candidate for further absorption process attributed to its good hydrophobicity and CO2/O2 selectivity characteristics. While their miscibility with pure MEA was somehow higher, utilizing the aqueous phase of MEA would be beneficial in this stage. Data on absorption performances and selectivity of CO2/O2 are scarce especially in gas–liquid membrane contactor system. Therefore, considering [emim] [NTf2] IL as a supporting material in supported ionic liquid membranes (SILMs), using aqueous phase of MEA as an absorbent would result in a great membrane-solvent combination system in furthering our gas–liquid membrane contactor process. In conclusion, COSMO-RS is a potentially great predictive utility to screen ILs for specified separation applications. In addition, this work provides useful results for the [emim] [NTf2]-SILMs to be extensively applied in the field of CO2 capture and selective O2 removal.  相似文献   

8.
This study is focused on the development of ionic liquids (ILs) based polymeric membranes for the separation of carbon dioxide (CO2) from methane (CH4). The advantage of ILs in selective CO2 absorption is that it enhances the CO2 selective separation for the ionic liquid membranes (ILMs). ILMs are developed and characterized with two different ILs using the solution‐casting method. Three different blend compositions of ILs and polysulfone (PSF) are selected for each ILMs 10, 20, and 30 wt %. Effect of the different types of ILs such as triethanolamine formate (TEAF) and triethanolamine acetate (TEAA) are investigated on PSF‐based ILMs. Field emission scanning electron microscopy analysis of the membranes showed reasonable homogeneity between the ILs and PSF. Thermogravimetric analysis showed that by increasing the ILs loading thermal stability of the membranes improved. Mechanical analysis on developed membranes showed that ILs phase reduced the amount of plastic flow of the PSF phase and therefore, fracture takes place at gradually lower strains with increasing ILs content. Gas permeation evaluation was carried out on the developed membranes for CO2/CH4 separation between 2 bar to 10 bar feed pressure. Results showed that CO2 permeance increases with the addition of ILs 10–30 wt % in ILMs. With 20–30 wt % TEAF‐ILMs and TEAA‐ILMs, the highest selectivity of a CO2/CH4 53.96 ± 0.3, 37.64 ± 0.2 and CO2 permeance 69.5 ± 0.6, 55.21 ± 0.3 is observed for treated membrane at 2–10 bar. The selectivity using mixed gas test at various CO2/CH4 compositions shows consistent results with the ideal gas selectivity. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 45395.  相似文献   

9.
Carbon dioxide was absorbed into an aqueous nanometer-sized colloidal silica solution in a flat-stirred vessel at 25 °C and 101.3 kPa to measure the absorption rate of CO2. The concentrations of silica were in the range of 0–31 wt% and the sizes were 7, 60, and 111 nm. The solution contained monoethanolamine (MEA) of 0–2.0 kmol/m3. The volumetric liquid-side mass transfer coefficient (k L a) of CO2 was correlated with the empirical formula representing the rheological property of silica solution. The use of the aqueous colloidal silica solution resulted in a reduction of the absorption rate of CO2 compared with Newtonian liquid based on the same viscosity of the solution. The chemical absorption rate of CO2 was estimated by film theory using k L a and physicochemical properties of CO2 and MEA.  相似文献   

10.
Gas‐liquid mass transfer in micropacked bed reactors is characterized with an automated platform integrated with in‐line Fourier transform infrared spectroscopy. This setup enables screening of a multidimensional parameter space underlying absorption with chemical reaction. Volumetric gas‐liquid mass‐transfer coefficients (kLa) are determined for the model reaction of CO2 absorption in a methyl diethanolamine/water solution. Parametric studies are conducted varying gas and liquid superficial velocities, packed bed dimensions and packing particle sizes. The results show that kLa values are in the range of 0.12~0.39 s?1, which is about one‐to‐two orders of magnitude larger than those of conventional trickle beds. An empirical correlation predicts kLa in micropacked bed reactors in good agreement with experimental data. © 2017 American Institute of Chemical Engineers AIChE J, 64: 564–570, 2018  相似文献   

11.
The study of CO2 absorption in ionic liquids (ILs): [Emim] [Ac], [Bmim] [Ac] in a packed column is presented. The influence of mass transfer resistances, initial CO2 concentration, absorption temperature and 2, 5, 10% wt. water addition on CO2 removal efficiency was investigated. The resistance in series model and estimated values of enhancement factor were used to predict with good accuracy mass fluxes of absorbed carbon dioxide for both ILs. The CO2 absorption efficiency in packed column depends on temperature and initial CO2 concentration. The addition of small amounts of water to [Emim][Ac] is of minor effect on CO2 absorption.  相似文献   

12.
Aqueous ammonia has been proposed as an absorbent for use in CO2 post combustion capture applications. It has a number of advantages over MEA such as high absorption capacity, low energy requirements for CO2 regeneration and resistance to oxidative and thermal degradation. However, due to its small molecular weight and large vapour pressure absorption must be carried at low temperature to minimise ammonia loss. In this work the rate of CO2 absorption into a falling thin film has been measured using a wetted-wall column for aqueous ammonia between 0.6 and 6 mol L?1, 278–293 K and 0–0.8 liquid CO2 loading. The results were compared to 5 mol L?1 MEA at 303 and 313 K. It was found that the overall mass transfer coefficient for aqueous ammonia was at least 1.5–2 times smaller than MEA at the measured temperatures. From determination of the second-order reaction rate constant k2 (915 L mol?1 s?1 at 283 K) and activation energy Ea (61 kJ mol?1) it was shown that the difference in mass transfer rate is likely due to both the reduced temperature and differences in reactivity between ammonia and MEA with CO2.  相似文献   

13.
The gas–liquid volumetric mass transfer coefficient was determined by the dynamic oxygen absorption technique using a polarographic dissolved oxygen probe and the gas–liquid interfacial area was measured using dual‐tip conductivity probes in a bubble column slurry reactor at ambient temperature and normal pressure. The solid particles used were ultrafine hollow glass microspheres with a mean diameter of 8.624 µm. The effects of various axial locations (height–diameter ratio = 1–12), superficial gas velocity (uG = 0.011–0.085 m/s) and solid concentration (εS = 0–30 wt.%) on the gas–liquid volumetric mass transfer coefficient kLaL and liquid‐side mass transfer coefficient kL were discussed in detail in the range of operating variables investigated. Empirical correlations by dimensional analysis were obtained and feed‐forward back propagation neural network models were employed to predict the gas–liquid volumetric mass transfer coefficient and liquid‐side mass transfer coefficient for an air–water–hollow glass microspheres system in a commercial‐scale bubble column slurry reactor. © 2012 Canadian Society for Chemical Engineering  相似文献   

14.
Post‐combustion processes based on ionic liquids (ILs) and membrane contactors are attractive alternatives to traditional systems. Here, a gas stream composed of 15 % CO2 and 85 % N2 flowed through the lumen side of a hollow‐fiber membrane contactor containing poly(vinylidene fluoride)‐IL (PVDF‐IL) fibers. The IL 1‐ethyl‐3‐methylimidazolium acetate [emim][Ac] served as an absorbent due to its high chemical absorption and CO2 solubility. The overall mass transfer coefficient (Koverall), activation energy (Ea), and resistances of the hollow‐fiber membrane were quantified. The Koverall value was one order of magnitude higher than those reported in previous works with conventional solvents, and the Ea was lower than formerly stated values for other solvents. A theoretical simulation was conducted to estimate the operational parameters required for 90 % CO2 capture and to quantify intensification effects related to CO2 absorption in a packed column.  相似文献   

15.
The mass transfer performance of CO2 absorption into blended N,N‐diethylethanolamine (DEEA)/ethanolamine (MEA) solutions was investigated using a lab‐scale absorber (H = 1.28 m, D = 28 mm) packed with Dixon ring random packing. The mass transfer coefficient KGav, the unit volume absorption rate Φ, outlet concentration of CO2 (yCO2), and the bottom temperature Tbot of CO2 in aqueous DEEA/MEA solutions were determined over the feed temperature range of 298.15–323.15 K, lean CO2 loading of 0.15–0.31 mol/mol, over a wide range of liquid flow rate of 3.90–9.75 m3/m2‐h, by using inert gas flow rate of 26.11–39.17 kmol/m2‐h and 6–18 kPa CO2 partial pressure. The results show that liquid feed temperature, lean CO2 loading, liquid flow rate, and CO2 partial pressure had significant effect on those parameters. However, the inert gas flow rate had little effect. To allow the mass transfer data to be really utilized, KGav and yout correlations for the prediction of mass transfer performance were proposed and discussed. © 2017 American Institute of Chemical Engineers AIChE J, 63: 3048–3057, 2017  相似文献   

16.
Volumetric mass transfer coefficients kLa for CO2 absorption into n‐alkane/water emulsions were determined at oil volume fractions of 0–100 % in a stirred tank at a stirring speed of 1000 min?1. The oil was n‐heptane, n‐hexadecane, or n‐dodecane. The decrease of kLa with increasing volume fraction of dispersed oil can be uniformly correlated to the emulsion viscosity with the power of ?0.72. Only the addition of n‐heptane caused a strong increase of the mass transfer coefficient. Upon addition of the surfactant sodium dodecyl sulfate to n‐heptane emulsions, kLa decreased as for the other oils. The increase can therefore be attributed to the spreading of n‐heptane on the bubble surface enabling gas‐oil contact, whereas spreading is inhibited by the ionic surfactant.  相似文献   

17.
Ionic Liquids (ILs) are considered as alternative solvents for the separation of CO2 from flue gas due mainly to their CO2 affinity and thermal stability. The cation architecture in a matrix of ammonium and mostly phosphonium‐based ILs with 2‐cyanopyrrolide as the anion to evaluate its impact on gravimetric CO2 absorption capacity, viscosity, and thermal stability and the three fundamental properties vital for application realization are systematically investigated. Among the investigated ILs, [P2,2,2,8][2‐CNpyr] demonstrated the lowest viscosity, 95 cP at 40°C, and highest CO2 uptake, 114 mg CO2 per g IL at 40°C. Combined effects of asymmetry and the optimized chain lengths also resulted in improved thermal stability for [P2,2,2,8][2‐CNpyr], with a mass loss rate of 1.35 × 10?6 g h?1 (0.0067 mass % h?1) at 80°C. © 2015 American Institute of Chemical Engineers AIChE J, 61: 2280–2285, 2015  相似文献   

18.
The new group binary interaction parameters of UNIFAC model (anm and amn) between CO2 and 22 ionic liquid (IL) groups were obtained by means of correlating the solubility data of CO2 in pure ILs at different temperatures (>273.2 K). We measured the CO2 solubility at low temperatures down to 243.2 K in pure ILs, i.e., [OMIM]+[BF4]? and [OMIM]+[Tf2N]?, and their equimolar amount of mixture, in order to fill the blank of solubility data at low temperatures and also to justify the applicability of UNIFAC model over a wider temperature range. It was verified that UNIFAC model can be used for predicting the CO2 solubility in pure ILs and in the binary mixture of ILs both at high (>273.2 K) and low temperatures (<273.2 K) effectively, as well as identifying the new structure–property relation. This is the first work to extend the UNIFAC model to IL‐CO2 systems. © 2013 American Institute of Chemical Engineers AIChE J 60: 716–729, 2014  相似文献   

19.
A stopped‐flow apparatus was used to measure the kinetics of carbon dioxide (CO2) absorption into aqueous solution of 1‐diethylamino‐2‐propanol (1DEA2P) in terms of observed pseudo‐first‐order rate constant (ko) and second‐order reaction rate constant (k2), in this work. The experiments were conducted over a 1DEA2P concentration range of 120–751 mol/m3, and a temperature range of 298–313 K. As 1DEA2P is a tertiary amine, the base‐catalyzed hydration mechanism was, then, applied to correlate the experimental CO2 absorption rate constants obtained from stopped‐flow apparatus. In addition, the pKa of 1DEA2P was experimentally measured over a temperature range of 278–333 K. The Brønsted relationship between reaction rate constant (obtained from stopped‐flow apparatus) and pKa was, then, studied. The results showed that the correlation based on the Brønsted relationship performed very well for predicting the absorption rate constant with an absolute average deviation of 5.2%, which is in an acceptable range of less than 10%. © 2014 American Institute of Chemical Engineers AIChE J, 60: 3502–3510, 2014  相似文献   

20.
The mass transfer process under CO2‐water Taylor flow was experimentally investigated in circular capillaries with different lengths. The measured volumetric mass transfer coefficient kLa was found to reduce with the increase of mass transfer time under the same operational conditions. With computational fluid dynamics simulations, the instantaneous kLa values decreased sharply at the initial stage of the mass transfer process. The effects of numerous experimental parameters on separated contribution of kLa were investigated for different dimensionless mass transfer times. The instantaneous kLa values for arbitary transfer times could be calculated and agreed well with experimental data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号