首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We study local, distributed algorithms for the capacitated minimum dominating set (CapMDS) problem, which arises in various distributed network applications. Given a network graph G=(V,E), and a capacity cap(v)∈ℕ for each node vV, the CapMDS problem asks for a subset SV of minimal cardinality, such that every network node not in S is covered by at least one neighbor in S, and every node vS covers at most cap(v) of its neighbors. We prove that in general graphs and even with uniform capacities, the problem is inherently non-local, i.e., every distributed algorithm achieving a non-trivial approximation ratio must have a time complexity that essentially grows linearly with the network diameter. On the other hand, if for some parameter ε>0, capacities can be violated by a factor of 1+ε, CapMDS becomes much more local. Particularly, based on a novel distributed randomized rounding technique, we present a distributed bi-criteria algorithm that achieves an O(log Δ)-approximation in time O(log 3 n+log (n)/ε), where n and Δ denote the number of nodes and the maximal degree in G, respectively. Finally, we prove that in geometric network graphs typically arising in wireless settings, the uniform problem can be approximated within a constant factor in logarithmic time, whereas the non-uniform problem remains entirely non-local.  相似文献   

2.
Power optimization is a central issue in wireless network design. Given a graph with costs on the edges, the power of a node is the maximum cost of an edge incident to it, and the power of a graph is the sum of the powers of its nodes. Motivated by applications in wireless networks, we consider several fundamental undirected network design problems under the power minimization criteria. Given a graph G=(V,E)\mathcal{G}=(V,\mathcal{E}) with edge costs {c(e):e∈ℰ} and degree requirements {r(v):vV}, the Minimum-Power Edge-Multi-Cover\textsf{Minimum-Power Edge-Multi-Cover} (MPEMC\textsf{MPEMC} ) problem is to find a minimum-power subgraph G of G\mathcal{G} so that the degree of every node v in G is at least r(v). We give an O(log n)-approximation algorithms for MPEMC\textsf{MPEMC} , improving the previous ratio O(log 4 n). This is used to derive an O(log n+α)-approximation algorithm for the undirected $\textsf{Minimum-Power $\textsf{Minimum-Power ($\textsf{MP$\textsf{MP ) problem, where α is the best known ratio for the min-cost variant of the problem. Currently, _boxclosen-k)\alpha=O(\log k\cdot \log\frac{n}{n-k}) which is O(log k) unless k=no(n), and is O(log 2 k)=O(log 2 n) for k=no(n). Our result shows that the min-power and the min-cost versions of the $\textsf{$\textsf{ problem are equivalent with respect to approximation, unless the min-cost variant admits an o(log n)-approximation, which seems to be out of reach at the moment.  相似文献   

3.
Given an undirected multigraph G=(V,E), a family $\mathcal{W}Given an undirected multigraph G=(V,E), a family W\mathcal{W} of areas WV, and a target connectivity k≥1, we consider the problem of augmenting G by the smallest number of new edges so that the resulting graph has at least k edge-disjoint paths between v and W for every pair of a vertex vV and an area W ? WW\in \mathcal{W} . So far this problem was shown to be NP-complete in the case of k=1 and polynomially solvable in the case of k=2. In this paper, we show that the problem for k≥3 can be solved in O(m+n(k 3+n 2)(p+kn+nlog n)log k+pkn 3log (n/k)) time, where n=|V|, m=|{{u,v}|(u,v)∈E}|, and p=|W|p=|\mathcal{W}| .  相似文献   

4.
An f-sensitivity distance oracle for a weighted undirected graph G(V,E) is a data structure capable of answering restricted distance queries between vertex pairs, i.e., calculating distances on a subgraph avoiding some forbidden edges. This paper presents an efficiently constructible f-sensitivity distance oracle that given a triplet (s,t,F), where s and t are vertices and F is a set of forbidden edges such that |F|≤f, returns an estimate of the distance between s and t in G(V,EF). For an integer parameter k≥1, the size of the data structure is O(fkn 1+1/k log (nW)), where W is the heaviest edge in G, the stretch (approximation ratio) of the returned distance is (8k−2)(f+1), and the query time is O(|F|⋅log 2 n⋅log log n⋅log log d), where d is the distance between s and t in G(V,EF).  相似文献   

5.
Y. Nekrich 《Algorithmica》2007,49(2):94-108
In this paper we present new space efficient dynamic data structures for orthogonal range reporting. The described data structures support planar range reporting queries in time O(log n+klog log (4n/(k+1))) and space O(nlog log n), or in time O(log n+k) and space O(nlog  ε n) for any ε>0. Both data structures can be constructed in O(nlog n) time and support insert and delete operations in amortized time O(log 2 n) and O(log nlog log n) respectively. These results match the corresponding upper space bounds of Chazelle (SIAM J. Comput. 17, 427–462, 1988) for the static case. We also present a dynamic data structure for d-dimensional range reporting with search time O(log  d−1 n+k), update time O(log  d n), and space O(nlog  d−2+ε n) for any ε>0. The model of computation used in our paper is a unit cost RAM with word size log n. A preliminary version of this paper appeared in the Proceedings of the 21st Annual ACM Symposium on Computational Geometry 2005. Work partially supported by IST grant 14036 (RAND-APX).  相似文献   

6.
We provide the first sparse covers and probabilistic partitions for graphs excluding a fixed minor that have strong diameter bounds; i.e. each set of the cover/partition has a small diameter as an induced sub-graph. Using these results we provide improved distributed name-independent routing schemes. Specifically, given a graph excluding a minor on r vertices and a parameter ρ>0 we obtain the following results: (1) a polynomial algorithm that constructs a set of clusters such that each cluster has a strong-diameter of O(r 2 ρ) and each vertex belongs to 2 O(r) r! clusters; (2) a name-independent routing scheme with a stretch of O(r 2), headers of O(log n+rlog r) bits, and tables of size 2 O(r) r! log 4 n/log log n bits; (3) a randomized algorithm that partitions the graph such that each cluster has strong-diameter O(r6 r ρ) and the probability an edge (u,v) is cut is O(rd(u,v)/ρ).  相似文献   

7.
Parallel integer sorting and simulation amongst CRCW models   总被引:1,自引:0,他引:1  
 In this paper a general technique for reducing processors in simulation without any increase in time is described. This results in an O(√log n) time algorithm for simulating one step of PRIORITY on TOLERANT with processor-time product of O(n log log n); the same as that for simulating PRIORITY on ARBITRARY. This is used to obtain an O(log n/log log n+√log n (log log m− log log n)) time algorithm for sorting n integers from the set {0,…, m−1}, mn, with a processor-time product of O(n log log m log log n) on a TOLERANT CRCW PRAM. New upper and lower bounds for ordered chaining problem on an allocated COMMON CRCW model are also obtained. The algorithm for ordered chaining takes O(log n/log log n) time on an allocated PRAM of size n. It is shown that this result is best possible (upto a constant multiplicative factor) by obtaining a lower bound of Ω(r log n/(log r+log log n)) for finding the first (leftmost one) live processor on an allocated-COMMON PRAM of size n of r-slow virtual processors (one processor simulates r processors of allocated PRAM). As a result, for ordered chaining problem, “processor-time product” has to be at least Ω(n log n/log log n) for any poly-logarithmic time algorithm. Algorithm for ordered-chaining problem results in an O(log N/log log N) time algorithm for (stable) sorting of n integers from the set {0,…, m−1} with n-processors on a COMMON CRCW PRAM; here N=max(n, m). In particular if, m=n O(1) , then sorting takes Θ(log n/log log n) time on both TOLERANT and COMMON CRCW PRAMs. Processor-time product for TOLERANT is O(n(log log n)2). Algorithm for COMMON uses n processors. Received August 13, 1992/June 30, 1995  相似文献   

8.
We revisit the problem of indexing a string S[1..n] to support finding all substrings in S that match a given pattern P[1..m] with at most k errors. Previous solutions either require an index of size exponential in k or need Ω(m k ) time for searching. Motivated by the indexing of DNA, we investigate space efficient indexes that occupy only O(n) space. For k=1, we give an index to support matching in O(m+occ+log nlog log n) time. The previously best solution achieving this time complexity requires an index of O(nlog n) space. This new index can also be used to improve existing indexes for k≥2 errors. Among others, it can support 2-error matching in O(mlog nlog log n+occ) time, and k-error matching, for any k>2, in O(m k−1log nlog log n+occ) time.  相似文献   

9.
Consider the following model on the spreading of messages. A message initially convinces a set of vertices, called the seeds, of the Erdős-Rényi random graph G(n,p). Whenever more than a ρ∈(0,1) fraction of a vertex v’s neighbors are convinced of the message, v will be convinced. The spreading proceeds asynchronously until no more vertices can be convinced. This paper derives lower bounds on the minimum number of initial seeds, min-seed(n,p,d,r)\mathrm{min\hbox{-}seed}(n,p,\delta,\rho), needed to convince a δ∈{1/n,…,n/n} fraction of vertices at the end. In particular, we show that (1) there is a constant β>0 such that min-seed(n,p,d,r)=W(min{d,r}n)\mathrm{min\hbox{-}seed}(n,p,\delta,\rho)=\Omega(\min\{\delta,\rho\}n) with probability 1−n −Ω(1) for pβ (ln (e/min {δ,ρ}))/(ρ n) and (2) min-seed(n,p,d,1/2)=W(dn/ln(e/d))\mathrm{min\hbox{-}seed}(n,p,\delta,1/2)=\Omega(\delta n/\ln(e/\delta)) with probability 1−exp (−Ω(δ n))−n −Ω(1) for all p∈[ 0,1 ]. The hidden constants in the Ω notations are independent of p.  相似文献   

10.
In this paper we study parallel batch scheduling problems with bounded batch capacity and equal-length jobs in a single and parallel machine environment. It is shown that the feasibility problem 1|p-batch,b<n,r j ,p j =p,C j d j |− can be solved in O(n 2) time and that the problem of minimizing the maximum lateness can be solved in O(n 2log n) time. For the parallel machine problem P|p-batch,b<n,r j ,p j =p,C j d j |− an O(n 3log n)-time algorithm is provided, which can also be used to solve the problem of minimizing the maximum lateness in O(n 3log 2 n) time.  相似文献   

11.
We study two related network design problems with two cost functions. In the buy-at-bulk k-Steiner tree problem we are given a graph G(V,E) with a set of terminals TV including a particular vertex s called the root, and an integer k≤|T|. There are two cost functions on the edges of G, a buy cost b:E→ℝ+ and a distance cost r:E→ℝ+. The goal is to find a subtree H of G rooted at s with at least k terminals so that the cost ∑ eH b(e)+∑ tTs dist(t,s) is minimized, where dist(t,s) is the distance from t to s in H with respect to the r cost. We present an O(log 4 n)-approximation algorithm for the buy-at-bulk k-Steiner tree problem. The second and closely related one is bicriteria approximation algorithm for Shallow-light k-Steiner trees. In the shallow-light k-Steiner tree problem we are given a graph G with edge costs b(e) and distance costs r(e), and an integer k. Our goal is to find a minimum cost (under b-cost) k-Steiner tree such that the diameter under r-cost is at most some given bound D. We develop an (O(log n),O(log 3 n))-approximation algorithm for a relaxed version of Shallow-light k-Steiner tree where the solution has at least terminals. Using this we obtain an (O(log 2 n),O(log 4 n))-approximation algorithm for the shallow-light k-Steiner tree and an O(log 4 n)-approximation algorithm for the buy-at-bulk k-Steiner tree problem. Our results are recently used to give the first polylogarithmic approximation algorithm for the non-uniform multicommodity buy-at-bulk problem (Chekuri, C., et al. in Proceedings of 47th Annual IEEE Symposium on Foundations of Computer Science (FOCS’06), pp. 677–686, 2006). A preliminary version of this paper appeared in the Proceedings of 9th International Workshop on Approximation Algorithms for Combinatorial Optimization Problems (APPROX) 2006, LNCS 4110, pp. 153–163, 2006. M.T. Hajiaghayi supported in part by IPM under grant number CS1383-2-02. M.R. Salavatipour supported by NSERC grant No. G121210990, and a faculty start-up grant from University of Alberta.  相似文献   

12.
We study the problem of asymptotically reducing the runtime of serial computations with circuits of polynomial size. We give an algorithmic size-depth tradeoff for parallelizing time t random access Turing machines, a model at least as powerful as logarithmic cost RAMs. Our parallel simulation yields logspace-uniform t O(1) size, O(t/log t)-depth Boolean circuits having semi-unbounded fan-in gates. In fact, for appropriate d, uniform t O(1)2 O(t/d) size circuits of depth O(d) can simulate time t. One corollary is that every log-cost time t RAM can be simulated by a log-cost CRCW PRAM using t O(1) processors and O(t/log t) time. This improves over previous parallel speedups, which only guaranteed an Ω(log t)-speedup with an exponential number of processors for weaker models of computation. These results are obtained by generalizing the well-known result that DTIME[t] í ASPACE[logt]\textsf{DTIME}[t]\subseteq \textsf{ASPACE}[\log t].  相似文献   

13.
Given an n-point metric (P,d) and an integer k>0, we consider the problem of covering P by k balls so as to minimize the sum of the radii of the balls. We present a randomized algorithm that runs in n O(log n⋅log Δ) time and returns with high probability the optimal solution. Here, Δ is the ratio between the maximum and minimum interpoint distances in the metric space. We also show that the problem is NP-hard, even in metrics induced by weighted planar graphs and in metrics of constant doubling dimension.  相似文献   

14.
We study the communication primitives of broadcasting (one-to-all communication) and gossiping (all-to-all communication) in known topology radio networks, i.e., where for each primitive the schedule of transmissions is precomputed based on full knowledge about the size and the topology of the network. We show that gossiping can be completed in time units in any radio network of size n, diameter D, and maximum degree Δ=Ω(log n). This is an almost optimal schedule in the sense that there exists a radio network topology, specifically a Δ-regular tree, in which the radio gossiping cannot be completed in less than units of time. Moreover, we show a schedule for the broadcast task. Both our transmission schemes significantly improve upon the currently best known schedules by Gąsieniec, Peleg, and Xin (Proceedings of the 24th Annual ACM SIGACT-SIGOPS PODC, pp. 129–137, 2005), i.e., a O(D+Δlog n) time schedule for gossiping and a D+O(log 3 n) time schedule for broadcast. Our broadcasting schedule also improves, for large D, a very recent O(D+log 2 n) time broadcasting schedule by Kowalski and Pelc. A preliminary version of this paper appeared in the proceedings of ISAAC’06. F. Cicalese supported by the Sofja Kovalevskaja Award 2004 of the Alexander von Humboldt Stiftung. F. Manne and Q. Xin supported by the Research Council of Norway through the SPECTRUM project.  相似文献   

15.
We present a new streaming algorithm for maintaining an ε-kernel of a point set in ℝ d using O((1/ε (d−1)/2)log (1/ε)) space. The space used by our algorithm is optimal up to a small logarithmic factor. This significantly improves (for any fixed dimension d 3) the best previous algorithm for this problem that uses O(1/ε d−(3/2)) space, presented by Agarwal and Yu. Our algorithm immediately improves the space complexity of the previous streaming algorithms for a number of fundamental geometric optimization problems in fixed dimensions, including width, minimum-volume bounding box, minimum-radius enclosing cylinder, minimum-width enclosing annulus, etc.  相似文献   

16.
Yijie Han 《Algorithmica》2008,51(4):428-434
We present an O(n 3(log log n/log n)5/4) time algorithm for all pairs shortest paths. This algorithm improves on the best previous result of O(n 3/log n) time. Research supported in part by NSF grant 0310245.  相似文献   

17.
We study the partial vertex cover problem. Given a graph G=(V,E), a weight function w:VR +, and an integer s, our goal is to cover all but s edges, by picking a set of vertices with minimum weight. The problem is clearly NP-hard as it generalizes the well-known vertex cover problem. We provide a primal-dual 2-approximation algorithm which runs in O(nlog n+m) time. This represents an improvement in running time from the previously known fastest algorithm. Our technique can also be used to get a 2-approximation for a more general version of the problem. In the partial capacitated vertex cover problem each vertex u comes with a capacity k u . A solution consists of a function x:V→ℕ0 and an orientation of all but s edges, such that the number of edges oriented toward vertex u is at most x u k u . Our objective is to find a cover that minimizes ∑ vV x v w v . This is the first 2-approximation for the problem and also runs in O(nlog n+m) time. Research supported by NSF Awards CCR 0113192 and CCF 0430650, and the University of Maryland Dean’s Dissertation Fellowship.  相似文献   

18.
Approximate string matching is about finding a given string pattern in a text by allowing some degree of errors. In this paper we present a space efficient data structure to solve the 1-mismatch and 1-difference problems. Given a text T of length n over an alphabet A, we can preprocess T and give an -bit space data structure so that, for any query pattern P of length m, we can find all 1-mismatch (or 1-difference) occurrences of P in O(|A|mlog log n+occ) time, where occ is the number of occurrences. This is the fastest known query time given that the space of the data structure is o(nlog 2 n) bits. The space of our data structure can be further reduced to O(nlog |A|) with the query time increasing by a factor of log  ε n, for 0<ε≤1. Furthermore, our solution can be generalized to solve the k-mismatch (and the k-difference) problem in O(|A| k m k (k+log log n)+occ) and O(log  ε n(|A| k m k (k+log log n)+occ)) time using an -bit and an O(nlog |A|)-bit indexing data structures, respectively. We assume that the alphabet size |A| is bounded by for the -bit space data structure.  相似文献   

19.
In this paper, we unify several graph partitioning problems including multicut, multiway cut, and k-cut, into a single problem. The input to the requirement cut problem is an undirected edge-weighted graph G=(V,E), and g groups of vertices X 1,…,X g V, with each group X i having a requirement r i between 0 and |X i |. The goal is to find a minimum cost set of edges whose removal separates each group X i into at least r i disconnected components. We give an O(log n⋅log (gR)) approximation algorithm for the requirement cut problem, where n is the total number of vertices, g is the number of groups, and R is the maximum requirement. We also show that the integrality gap of a natural LP relaxation for this problem is bounded by O(log n⋅log (gR)). On trees, we obtain an improved guarantee of O(log (gR)). There is an Ω(log g) hardness of approximation for the requirement cut problem, even on trees.  相似文献   

20.
We design compact and responsive kinetic data structures for detecting collisions between n convex fat objects in 3-dimensional space that can have arbitrary sizes. Our main results are:
(i)  If the objects are 3-dimensional balls that roll on a plane, then we can detect collisions with a KDS of size O(nlog n) that can handle events in O(log 2 n) time. This structure processes O(n 2) events in the worst case, assuming that the objects follow constant-degree algebraic trajectories.
(ii)  If the objects are convex fat 3-dimensional objects of constant complexity that are free-flying in ℝ3, then we can detect collisions with a KDS of O(nlog 6 n) size that can handle events in O(log 7 n) time. This structure processes O(n 2) events in the worst case, assuming that the objects follow constant-degree algebraic trajectories. If the objects have similar sizes then the size of the KDS becomes O(n) and events can be handled in O(log n) time.
M.A. and S.-H.P. were supported by the Netherlands’ Organisation for Scientific Research (NWO) under project no. 612.065.307. M.d.B. was supported by the Netherlands’ Organisation for Scientific Research (NWO) under project no. 639.023.301.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号