首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper, we examine an assembly line balancing problem that differs from the conventional one in the sense that there are multi-manned workstations, where workers’ groups simultaneously perform different assembly works on the same product and workstation. This situation requires that the product is of sufficient size, as for example in the automotive industry, so that the workers do not block each other during the assembly work. The proposed approach here results in shorter physical line length and production space utilization improvement, because the same number of workers can be allocated to fewer workstations. Moreover, the total effectiveness of the assembly line, in terms of idle time and production output rate, remains the same. A heuristic assembly line balancing procedure is thus developed and illustrated. Finally, experimental results of a real-life automobile assembly plant case and well-known problems from the literature indicate the effectiveness and applicability of the proposed approach in practice.  相似文献   

2.
In a car, there are approximately 30,000 parts produced by many different industries. This is due to the complexity and enormity of the automotive industry chain. The vehicle assembly process comprises welding, painting, prefabrication, and final entire-vehicle assembly. The assembly line has the largest labor force, which should be arranged and balanced to increase production efficiency and reduce labor force requirements. Unlike traditional studies on assembly line balancing problems (ALBPs), this study considers the characteristics of the automotive industry, such as multi-manned workstations, minimization in terms of the numbers of operators and workstations for streamlined production, budget constraints, the optimization of both task and operator allocation among workstations, and the determination of the start/end processing time of each task at different workstations. To address these NP-hard problems, a hybrid heuristic approach that combines the procedure of building feasible balancing solutions and the simulated annealing algorithm is proposed to map out an optimal line balancing plan for multi-manned workstations and to reduce the required workspace for shop operations. Based on the design and analysis of experiments, the effects of the maximum number of allowed operators per workstation and those of the cycle time on ALBP solutions are explored. The optimal combination of algorithm parameters is also determined. The results of this study can serve as a practical reference in planning the allocation of tasks, workstations, and operators in the industry.  相似文献   

3.
The task of balancing of assembly lines is of considerable industrial importance. It consists of assigning operations to workstations in a production line in such a way that (1) no assembly precedence constraint is violated, (2) no workstations in the line takes longer than a predefined cycle time to perform all tasks assigned to it, and (3) as few workstations as possible are needed to perform all the tasks in the set. This paper presents a new multiple objective simulated annealing (SA) algorithm for simple (line) and U type assembly line balancing problems with the aim of maximizing “smoothness index” and maximizing the “line performance” (or minimizing the number of workstations). The proposed algorithm makes use of task assignment rules in constructing feasible solutions. The proposed algorithm is tested and compared with literature test problems. The proposed algorithm found the optimal solutions for each problem in short computational times. A detailed performance analysis of the selected task assignment rules is also given in the paper.  相似文献   

4.
Assembly line balancing is the problem of assigning tasks to workstations by optimizing a performance measure while satisfying precedence relations between tasks and cycle time restrictions. Many exact, heuristic and metaheuristic approaches have been proposed for solving simple straight and U-shaped assembly line balancing problems. In this study, a relatively new optimization algorithm, Bacterial Foraging Optimization Algorithm (BFOA), based heuristic approach is proposed for solving simple straight and U-shaped assembly line balancing problems. The performance of the proposed algorithm is evaluated using a well-known data set taken from the literature in which the number of tasks varies between 7 and 111, and results are also compared with both an ant-colony-optimization-based heuristic approach and a genetic-algorithm-based heuristic approach. The proposed algorithm provided optimal solutions for 123 out of 128 (96.1 %) test problems in seconds and is proven to be promising.  相似文献   

5.
Avoiding work overload (imbalance) in mixed model U-line production systems entails an investigation into both balancing and sequencing problems at the same time and that is why some authors have considered both planning problems simultaneously. However because of the existing differences between planning horizons of balancing and sequencing problems (the former is a long to mid-term planning problem whereas the latter has a short term planning horizon) this simultaneous approach is only practical under very special conditions. It is also known that installation of an assembly line usually needs considerable capital investments and consequently it is necessary to design and balance such a system so that it works as efficiently as possible. To do so, in this paper, we develop a new approach to balance a mixed model U-shaped production system independent of what product sequences may be. This new approach is based on minimization of crossover workstations. Due to utilization of crossover workstations, balancing mixed model assembly lines in U-shaped line layouts is more complicated than that of straight lines. Some kind of issues including the ‘model mixes’ appearing in such workstations and the time taken for an operator to move from one side of the line to another increase the complexity of mixed model U-line balancing problems (MMULBP). Therefore it seems reasonable to develop a model in which minimizing the number of crossover workstations and maximizing the line efficiency are considered at the same time. Such a model is presented in this paper. In the proposed model, minimizing the variation of workload is also considered and taking into account operator's travel times, an extra time is assigned to workload of crossover workstations. Furthermore a genetic algorithm (GA) is proposed and a number of well-known test problems are solved by the GA and the related results are illustrated. Finally, the conclusion is presented.  相似文献   

6.
Two-sided assembly lines are a special type of assembly lines in which workers perform assembly tasks in both sides of the line. This type of lines is of crucial importance, especially in the assembly of large-sized products, like automobiles, buses or trucks, in which some tasks must be performed at a specific side of the product. This paper presents an approach to address the two-sided mixed-model assembly line balancing problem. First, a mathematical programming model is presented to formally describe the problem. Then, an ant colony optimisation algorithm is proposed to solve the problem. In the proposed procedure two ants ‘work’ simultaneously, one at each side of the line, to build a balancing solution which verifies the precedence, zoning, capacity, side and synchronism constraints of the assembly process. The main goal is to minimise the number of workstations of the line, but additional goals are also envisaged. The proposed procedure is illustrated with a numerical example and results of a computational experience that exhibit its superior performance are presented.  相似文献   

7.
The lexicographic bottleneck assembly line balancing problem is a recently introduced problem which aims at obtaining a smooth workload distribution among workstations. This is achieved hierarchically. The workload of the most heavily loaded workstation is minimised, followed by the workload of the second most heavily loaded workstation and so on. This study contributes to knowledge by examining the application of the lexicographic bottleneck objective on mixed-model lines, where more than one product model is produced in an inter-mixed sequence. The main characteristics of the lexicographic bottleneck mixed-model assembly line balancing problem are described with numerical examples. Another contribution of the study is the methodology used to deal with the complex structure of the problem. Two effective meta-heuristic approaches, namely artificial bee colony and tabu search, are proposed. The parameters of the proposed meta-heuristics are optimised using response surface methodology, which is a well-known design of experiments technique, as a unique contribution to the expert and intelligent systems literature. Different from the common tendency in the literature (which aims to optimise one parameter at a time), all parameters are optimised simultaneously. Therefore, it is shown how a complex production planning problem can be solved using sophisticated artificial intelligence techniques with optimised parameters. The methodology used for parameter setting can be applied to other metaheuristics for solving complex problems in practice. The performances of both algorithms are assessed using well-known test problems and it is observed that both algorithms find promising solutions. Artificial bee colony algorithm outperforms tabu search in minimising the number of workstations while tabu search shows a better performance in minimising the value of lexicographic bottleneck objective function.  相似文献   

8.
This paper addresses the problem of balancing assembly or fabrication lines. In order to achieve a given production rate or to optimize the use of workstations, one has to tackle the problem of balancing the production lines. It is well known that this problem belongs to the class of NP-hard problems. In this paper the polyhedron of the feasible solutions of the assembly line balancing problem is first studied. Then a Lagrangian relaxation algorithm that incorporates the set of cycle constraints in the objective function is proposed. These constraints are the complicating restrictions in the model. The relaxed problem has the interesting property that its linear programming relaxation always has integer optimal solutions. The subgradient algorithm is then used to maximize the Lagrangian dual. A heuristic is also used to find primal feasible solutions for the original line balancing integer program. These two bounds are then used to reduce the size of the branch-and-bound tree.  相似文献   

9.
In the event that big-sized complex products (containing a large number of assembly tasks most of which have long task times) are produced in simple or two-sided assembly lines, hundreds of stations are essentially required. Long product flow time, a large area for establishment of the line, a high budget for the investment of equipment, and tools in stations and several work-in-process are also required for these kinds of products. In order to avoid these disadvantages, assembly lines with parallel multi-manned workstations can be utilized. In this paper, these lines and one of their balancing problems are addressed, and a branch and bound algorithm is proposed. The algorithm is composed of a branching scheme, some efficient dominance and feasibility criteria based on a problem-specific knowledge. A heuristic-based guidance for enumeration process is included as an efficient component of the algorithm as well. VWSolver algorithm proposed for a special version of the problem in the literature has been modified and compared with the proposed algorithm. Results show that proposed algorithm outperforms VWSolver in terms of both CPU times and quality of feasible solutions found.  相似文献   

10.
Mixed-model assembly lines allow for the simultaneous assembly of a set of similar models of a product, which may be launched in the assembly line in any order and mix. As current markets are characterized by a growing trend for higher product variability, mixed-model assembly lines are preferred over the traditional single-model assembly lines.

This paper presents a mathematical programming model and an iterative genetic algorithm-based procedure for the mixed-model assembly line balancing problem (MALBP) with parallel workstations, in which the goal is to maximise the production rate of the line for a pre-determined number of operators.

The addressed problem accounts for some relevant issues that reflect the operating conditions of real-world assembly lines, like zoning constraints and workload balancing and also allows the decision maker to control the generation of parallel workstations.  相似文献   


11.
12.
In the past decades, robots have been extensively applied in assembly systems as called robotic assembly lines. When changes in the production process of a product take place, the line needs to be reconfigured in order to improve its productivity. This study presents a type II robotic assembly line balancing (rALB-II) problem, in which the assembly tasks have to be assigned to workstations, and each workstation needs to select one of the available robots to process the assigned tasks with the objective of minimum cycle time. An innovative genetic algorithm (GA) hybridized with local search is proposed for the problem. The genetic algorithm uses a partial representation technique, where only part of the decision information about a candidate solution is expressed in the chromosome and the rest is computed via a heuristic method. Based on different neighborhood structures, five local search procedures are developed to enhance the search ability of GA. The coordination between these procedures is well considered in order to escape from local optima and to reduce computation time. The performance of the hybrid genetic algorithm (hGA) is tested on 32 rALB-II problems and the obtained results are compared with those by other methods.  相似文献   

13.
Genetic algorithms for sequencing problems in mixed model assembly lines   总被引:1,自引:0,他引:1  
Mixed model assembly lines are a type of production line where a variety of product models similar in product characteristics are assembled. The effective utilisation of these lines requires that a schedule for assembling the different products be determined. In this paper, the performance of genetic algorithms for sequencing problems in mixed model assembly lines is investigated. The problem first considered is a comparison between a existing heuristic and the proposed genetic algorithm to get the constant usage of every part used by the line considering variation at multi levels (Number of levels fixed as four. level 1—product, level 2—subassembly, level 3—component, level 4—raw-materials) for various test-bed problems. The algorithms proposed by Miltenburg and Sinnamon hereafter referred to as MS 1992 [IIE Trans. 24 (1992) 121] and the proposed genetic algorithm (GA) applied to mixed model assembly line are compared. Results of evaluation indicate that the GA performs better over MS1992 on 25 of the 40 problems investigated.

The other problem solved is a multiple objective sequencing problem in mixed model assembly lines. Three practically important objectives are minimizing total utility work keeping a constant rate of part-usage, minimizing the variability in parts usage and minimizing total setup cost. In this paper, the performance of the selection mechanisms, the Pareto stratum-niche cubicle and the selection based on scalar fitness function value are compared with respect to the objective of minimising variation in part-usage, minimising total utility work and minimising the setup cost. Results of evaluation indicate that the genetic algorithm that uses the Pareto stratum-niche cubicle performs better than the genetic algorithm with the other selection mechanisms.  相似文献   


14.
In a robotic assembly line, a series of stations are arranged along a conveyor belt and a robot performs on tasks at each station. Parallel assembly lines can provide improving line balance, productivity and so on. Combining robotic and parallel assembly lines ensure increasing flexibility of system, capacity and decreasing breakdown sensitivity. Although aforementioned benefits, balancing of robotic parallel assembly lines is lacking – to the best knowledge of the authors- in the literature. Therefore, a mathematical model is proposed to define/solve the problem and also iterative beam search (IBS), best search method based on IBS (BIBS) and cutting BIBS (CBIBS) algorithms are presented to solve the large-size problem due to the complexity of the problem. The algorithm also tested on the generated benchmark problems for robotic parallel assembly line balancing problem. The superior performances of the proposed algorithms are verified by using a statistical test. The results show that the algorithms are very competitive and promising tool for further researches in the literature.  相似文献   

15.
This paper is the first one of the two papers entitled “modeling and solving mixed-model assembly line balancing problem with setups”, which has the aim of developing the mathematical programming formulation of the problem and solving it with a hybrid meta-heuristic approach. In this current part, a mixed-integer linear mathematical programming (MILP) model for mixed-model assembly line balancing problem with setups is developed. The proposed MILP model considers some particular features of the real world problems such as parallel workstations, zoning constraints, and sequence dependent setup times between tasks, which is an actual framework in assembly line balancing problems. The main endeavor of Part-I is to formulate the sequence dependent setup times between tasks in type-I mixed-model assembly line balancing problem. The proposed model considers the setups between the tasks of the same model and the setups because of the model switches in any workstation. The capability of our MILP is tested through a set of computational experiments. Part-II tackles the problem with a multiple colony hybrid bees algorithm. A set of computational experiments is also carried out for the proposed approach in Part-II.  相似文献   

16.
In this paper, we consider a sequence-dependent disassembly line balancing problem (SDDLBP) with multiple objectives that requires the assignment of disassembly tasks to a set of ordered disassembly workstations while satisfying the disassembly precedence constraints and optimizing the effectiveness of several measures. Since the complexity of SDDLBP increases with the number of parts of the product, an efficient methodology based on artificial bee colony (ABC) is proposed to solve the SDDLBP. ABC is an optimization technique which is inspired by the behavior of honey bees. The performance of the proposed algorithm was tested against six other algorithms. The results show that the proposed ABC algorithm performs well and is superior to the other six algorithms in terms of the objective values performance.  相似文献   

17.
This paper presents a new hybrid algorithm, which executes ant colony optimization in combination with genetic algorithm (ACO-GA), for type I mixed-model assembly line balancing problem (MMALBP-I) with some particular features of real world problems such as parallel workstations, zoning constraints and sequence dependent setup times between tasks. The proposed ACO-GA algorithm aims at enhancing the performance of ant colony optimization by incorporating genetic algorithm as a local search strategy for MMALBP-I with setups. In the proposed hybrid algorithm ACO is conducted to provide diversification, while GA is conducted to provide intensification. The proposed algorithm is tested on 20 representatives MMALBP-I extended by adding low, medium and high variability of setup times. The results are compared with pure ACO pure GA and hGA in terms of solution quality and computational times. Computational results indicate that the proposed ACO-GA algorithm has superior performance.  相似文献   

18.
Designing and operating two-sided assembly lines are crucial for manufacturing companies which assemble large-sized products such as trucks, buses and industrial refrigerators. This type of assembly line structure has several advantages over one-sided assembly lines such as shortened line length and reduced throughput time. The research area has recently focused on balancing two-sided assembly lines owing to these advantages. However, due to the complex structure of this problem, some practical constraints have been disregarded or have not been fully incorporated. In order to overcome these deficiencies, a fully constrained two-sided assembly line balancing problem is addressed in this research paper. Initially, a mathematical programming model is presented in order to describe the problem formally. Due to the problem complexity, two different swarm intelligence based search algorithms are implemented to solve large-sized instances. Bees algorithm and artificial bee colony algorithm have been applied to the fully constrained two-sided assembly line balancing problem so as to minimize the number of workstations and to obtain a balanced line. An extensive computational study has also been performed and the comparative results have been evaluated.  相似文献   

19.
Multi-criteria decision making for assembly line balancing   总被引:1,自引:0,他引:1  
Assembly line balancing often has significant impact on performance of manufacturing systems, and is usually a multiple-objective problem. Neither an algorithmic nor a procedural assembly line balancing methodology is usually effective in solving these problems. This article proposes a data envelopment analysis (DEA) approach to solve an assembly line balancing problem. A computer-aided assembly line balancing tool as Flexible Line Balancing software is used to generate a considerable number of solutions alternatives as well as to generate quantitative decision-making unit outputs. The quantitative performance measures were considered in this article. Then DEA was used to solve the multiple-objective assembly line balancing problem. An illustrative example shows the effectiveness of the proposed methodology.  相似文献   

20.
Modular machining lines with multi-spindle workstations are considered. A multi-spindle head executes a set of operations. The problem of optimal design or reconfiguration of such lines is considered here. The set of all available spindle heads, operations executed by each spindle head, spindle head times and costs are assumed to be known. There are operations which can be executed by one of several candidate spindle heads, i.e., in different configuration with other operations. The problem consists in the choice of spindle heads from the given set and their assignment to workstations. The goal is to minimize the line cost while satisfying the precedence, inclusion and exclusion constraints. This problem is an extension of well known assembly line balancing and equipment selection problem. In our previous work, we proposed a MIP model which was significantly limited as to the size of the problems treated. In this paper, quite a few original approaches are suggested to improve the previous MIP model. The numerical tests reported show that the calculation time is drastically decreased, thereby expanding the model to larger and more realistic industrial problems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号