首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A linear elastic solution is proposed for a circular disc in transition from a plate-like (pure bending) to a membrane-like behavior (pure stretching) under a central point load. The strain energy release rate for film delamination is found to be G = χ(Pw0a2) with χ a numerical constant varying from 1/2 for a plate-like disc to 1/4 for a thin flexible membrane.  相似文献   

2.
In the shaft-loaded blister test (SLBT), plastic deformation often occurs at the contact area between the shaft tip and adhesive layer, leading to a larger displacement (blister height) than if the film was loaded elastically. As a consequence, incorporating the displacement variable into the analysis can result in misleading values of the applied strain energy-release rate, G. In this work, the influence of plastic yielding at the contact area on G of a thin film was investigated as a function of some common SLBT experimental variables, namely, substrate hole diameter, film thickness, and shaft-tip diameter. Test specimens consisted of plies of pressure-sensitive adhesive tape adhered to a rigid glass substrate. G was calculated from the following Equations: (1) load-based, (2) hybrid, (3) displacement-based, and (4) combination. Decreasing the film thickness, increasing the hole diameter, or decreasing the shaft-tip diameter lead to more plastic yielding at the contact area as well as to an increase in blister height. The increased blister height resulting from plastic deformation leads to disagreement among the values of G calculated from the different Equations when the displacement variable was included in the calculation. However, the load-based equation, which does not include the displacement, was determined to be independent of plastic yielding and the “correct” equation for calculating G. In addition, the film tensile rigidity (Eh) was calculated using an experimental compliance calibration. The effects of film thickness on the mechanical behavior of the film (bending plate vs. stretching membrane) as well as methods to determine the displacement resulting from plastic deformation are also discussed.  相似文献   

3.
The mechanical peel behaviour of laminates consisting of polyimide films adhered to copper foil using a modified acrylic adhesive has been studied over a wide range of test rates and temperatures. The laminates were prepared from polyimide films which had been subjected to either a “high-thermal history” or a “low-thermal history” treatment during the production of the film. The measured peel energies of the laminates could be superimposed to give a master curve of peel energy versus the reduced rate of peel test, RaT, where R is the rate of peel test and aT is the time-temperature shift factor. The appropriate shift factors were a function of the test temperature and were mainly deduced from tensile tests conducted on the bulk adhesive. The “high-thermal history” laminates gave higher peel energies and the locus of failure of the laminates was mainly by cohesive fracture through the adhesive layer. At low values of log10 RaT, i.e. Low rates of peel and high test temperatures, the “low-thermal history” laminates also failed in the adhesive layer and possessed similar peel energies to those measured for the “high-thermal history” laminates. However, at high log10 RaT values, the peel energies measured for the “low-thermal history” laminates were lower and showed a wider scatter. These arose from a different locus of failure occurring in these “low-thermal history” laminates when tested under these conditions. Namely, it was found that most of these laminates failed in a weak boundary layer in the outer regions of the “low-thermal history” polyimide film.  相似文献   

4.
Two magnetoresistive manganites, La0.83Sr0.17MnO3 and La0.7Sr0.3MnO3, are synthesized by the environmentally friendly “deposition by aqueous acetate solution (DAAS)” technique. The manganite film has a grain size of 100 nm, and can be processed as thinly as 0.03 μm per layer, while the powder form has a crystallite size of 40 nm. These magnetoresistive materials are shown to be effective and inexpensive electromagnetic interference (EMI) shield for the extremely low frequency (ELF) EM fields. The electrical resistance of manganites is very sensitive to external influences, such as temperature and electromagnetic fields. Both permeability (μ) and conductivity (σ) of manganites tend to increase with increasing applied magnetic field. The manganites have been shown to “react” to field increases in a way that is particularly useful for shielding EMI field fluctuations (e.g., due to current or voltage spikes).

The manganite properties, e.g., crystal structure, film morphology, radiation absorption and reflection, electrical resistivity, and magnetization, etc., have been measured. The ceramic manganites have a metal–insulator transition at 300 K or higher, and are suitable for a room temperature operation. A thin film (approx. 0.1 μm) of La0.83Sr0.17MnO3 was fabricated on a quartz tube or refractory ceramic fiber blanket. Using this thin manganite film, the EMI shielding effectiveness for the measured E-field attenuation is similar to that of a 25 μm thickness of copper tube, aluminum foil, and silver–nickel particle-dispersed paper. The silver–nickel impregnated paper has an EMI shielding effectiveness of 35 dB at 10 kHz, and 15 dB at 60 Hz (or frequency above 1 MHz). The ceramic manganites are chemically inert, thermally stable, and mechanically flexible. They provide low cost EMI shielding against directed energy pulses and may serve as a “signature reduction” barrier.  相似文献   


5.
The force needed to pull a cylindrical stud from a soft elastomeric film depends on their elastic and geometric properties. For a rigid stud and a thick elastomeric film, the pull-off stress (σ) depends on the elastic modulus (E) of the film and the radius (a) of the stud as σ ∼ (E/a)1/2 (soft adhesion). However, when the film is very thin, the pull-off stress is significantly higher than the case with thick films, and its value depends on the elastic modulus and the thickness (h) of the film as σ ∼ (E/h)1/2 (hard adhesion). Here, we study the pull-off behavior of a soft cylindrical stud, one flat end of which is coated with a high modulus thin baseplate. As the flexural rigidity of this baseplate is varied, we observe the transition between the two types of adhesion. We present a simple physical interpretation of the problem, which could be of value in understanding various biofouling and adhesive situations.  相似文献   

6.
The growth and potential cycling of polypyrrole films on platinum has been examined using time-resolved in situ ellipsometry. The optical properties of the films produced depend critically on the experimental conditions used to grow the films. Films grown from “wet” acetonitrile, or acidic ( n (1.25–1.35) at 633 nm, indicating the presence of a very strong absorption band in the near-infra-red (Lorentz oscillator model). Films grown in less optimal conditions (neutral aqueous solution, or with Fe(CN)3−6-containing electrolyte) have higher n values (1.45–1.5). Comparison of calculated (from charge per unit area data) and measured (ellipsometric) film thickness shows that films grown in aqueous media are somewhat denser than those grown in acetonitrile. On reduction, the film thickness increases for films grown under all conditions, but the change is greater for films grown from aqueous solution. Changes in n and absorbance, k, are, as expected, wavelength-dependent, but in general n greatly increases (to 1.65–1.80); this is also rationalized using the Lorentz oscillator model, since the wavelengths employed are to low energy of a strong absorption in neutral polypyrrole at ca 390 nm. On potential cycling from the reduced to the oxidized form, the film thickness decreases between ca −0.6 and −0.2 V, but thereafter, although charge is still being passed, changes much more slowly.  相似文献   

7.
The adhesive fracture energy (fracture toughness) of tapes during globally elastic unpeeling is often calculated from the relation “G=P/b(1−cos θ)”. We show that while this expression is correct for elastic peeling from rigid substrates, it gives misleading results when peeling from reversible flexible substrates. A two-dimensional analysis is presented for peeling from non-linear elastic substrates that give consistent fracture energies from experimental data.  相似文献   

8.
A new method of “instantaneous phase portrait” was developed for measurements of thermal diffusivity χ of thin films with high values of χ, such as diamond films. This method is based on the registration of the air layer refractive index spatial distribution by means of double exposure holographic interferometry and the derivation of the thermal diffusivity value χ from the spatial distribution. The values of thermal diffusivity for copper and steel foils measured by this technique coincide with the tabular ones. The method was also applied to measure thermal diffusivity of thin diamond films. The measured values were in 2–3 cm2 s−1 range.  相似文献   

9.
Conductance measurements are reported for several salts in binary aqueous mixtures containing up to 60 mole % sulfolane, 20 mole % acetonitrile and 20 mole % dimethylsulfoxide. The variations of R = (λ±0η0)s/(λ±0η0)w with solvent composition have been compared with those observed in other water-rich mixtures. Alkali cations show R values greater than one with maxima in all the solvent mixtures. This behaviour has been discussed in terms of “sorting”, “averaging” and “steric” effects. Contrary to what happens to alkali cations, halide ions show R values greater or lesser than one according to whether the organic solvent respectively increases or decreases water structure. On these bases we suggest that conductometric behaviour of the halide ions may be indicative of the effect of the cosolvent on the water structure in water-rich mixtures and that DMSO is a water structure breaker.  相似文献   

10.
The reduction of NO under cyclic “lean”/“rich” conditions was examined over two model 1 wt.% Pt/20 wt.% BaO/Al2O3 and 1 wt.% Pd/20 wt.% BaO/Al2O3 NOx storage reduction (NSR) catalysts. At temperatures between 250 and 350 °C, the Pd/BaO/Al2O3 catalyst exhibits higher overall NOx reduction activity. Limited amounts of N2O were formed over both catalysts. Identical cyclic studies conducted with non-BaO-containing 1 wt.% Pt/Al2O3 and Pd/Al2O3 catalysts demonstrate that under these conditions Pd exhibits a higher activity for the oxidation of both propylene and NO. Furthermore, in situ FTIR studies conducted under identical conditions suggest the formation of higher amounts of surface nitrite species on Pd/BaO/Al2O3. The IR results indicate that this species is substantially more active towards reaction with propylene. Moreover, its formation and reduction appear to represent the main pathway for the storage and reduction of NO under the conditions examined. Consequently, the higher activity of Pd can be attributed to its higher oxidation activity, leading both to a higher storage capacity (i.e., higher concentration of surface nitrites under “lean” conditions) and a higher reduction activity (i.e., higher concentration of partially oxidized active propylene species under “rich” conditions). The performance of Pt and Pd is nearly identical at temperatures above 375 °C.  相似文献   

11.
Phase transition phenomenon of the 1-dodecanol monolayer at the air/water interface was studied by the dynamic γ(t) curves and the adsorption isotherm obtained by ellipsometry at 20 °C. The surface-concentration adsorption isotherm clearly showed three abrupt increases at bulk concentration C of 1.3 × 10−9, 2 × 10−9 and 3.7 × 10−9 mol/mL, respectively. The 1st and the 3rd transitions observed herein, that were typical 2D first-order transitions, were consistent with the gas to liquid expanded (G–LE) and the liquid expanded to liquid condensed (LE–LC) phase transitions observed in a previous tensiometry study. The 2nd transition that occurred at C = 2 × 10−9 mol/mL was not identified from any previous dynamic surface-tension profiles. Judging from the substantial increase in the film thickness of the transition, it was believed that the orientation change of the adsorbed molecule was involved in the LE phase. A LEh and a LEv phase, that denoted the “lie-down” and “stand-up” types of adsorption, respectively, was used to describe this transition and a cusp, instead of a constant surface-tension region, was observed in the dynamic γ(t) curves for this transition. This suggested that, since the surface tension varied during the transition process, the newly identified LEh and LEv transition might not be the typical first-order type of phase transition.  相似文献   

12.
The mechanical properties of the adhesive produced by spores of the green, marine, fouling alga Ulva linza are reported. Atomic force microscopy studies were performed and nanoindentation data were analyzed using a model for an asymmetric indenter. Freshly secreted adhesive is characterized by multiple layers. We found that the modulus of the outer ∼600-nm thick layer was about 0.2 ± 0.1 MPa, whereas the modulus of the inner layer was about 3 ± 1 MPa. Older adhesive showed the formation of a “crust” of harder material with a yield strength of ∼20 MPa at a loading rate of 2.5 × 10-6 N · s-1. Mechanical properties under tension are also described, and extension profiles that showed either constant or nonlinear force changes with tip-sample separation were observed. Models for both kinds of behavior are described. The work of adhesion between poly-dimethylsiloxane (PDMS)-coated AFM tips and the adhesive was determined to be less than 1.5 mJ · m-2.  相似文献   

13.
A new approach of analyzing the depth profile of double bond conversion as a function of film depth has been studied. By using a combination of statistical calculation and traditional FTIR, a new approach to analyze the depth profile of conversion “layer by layer” in the characterization of photopolymerization was explored. Utilizing a formula (X1 + X2 +  + Xn)/n = average conversion, n = 1, 2, 3, n is a number of layers (μm), an average conversion of any 5 μm depth could be calculated from the prior 5 μm conversion and the total average conversion. More detailed information of photopolymerization, such as the depth profile of conversion and a difference in conversion between the top 5 μm and the bottom 5 μm in a 25 μm film as a function of film depth, was obtained. This investigation was accomplished using a variation of film depth, non-photo bleaching photo initiator [PhI] as well as the concentration of PhIs in the presence of air and in the absence of air. Results of analyzing double bond conversion between traditional FTIR and the new approach (statistical calculation/FTIR) were compared.  相似文献   

14.
Surface dynamics during latex film formation   总被引:3,自引:0,他引:3  
Surface dynamics during latex film formation has been investigated theoretically and experimentally by atomic force microscopy. The peak-to-valley distance, y(t), of the latex particles in the surface plane of the latex film decayed exponentially with time during film formation. A theoretical relationship between y(t) and time, t, is given by y(t)=y(0) exp[−t/τ], where y(0) is the value of y(t) when t is zero. τ is a characteristic constant related to the nature of polymer, the particle radius, the surface diffusion coefficient and the temperature. The relationship between the surface diffusion coefficient, Ds, y(0), the radius of the latex particles, R, temperature, T, and τ is given approximately by Ds=1.2×10−20y(0)2[2Ry(0)]2T/τ (cm2/s), where the units are manometers for y(0) and R, kelvin for temperature, and seconds for τ. By measuring the decay of y(t) with time, the surface diffusion coefficient can be obtained. The surface diffusion coefficient for a poly(methyl methacrylate-co-butylacrylate) (50:50) copolymer latex film was found to be A×10−13 cm2/s, A is temperature-dependent.  相似文献   

15.
Experimental data on the average mass transfer liquid film coefficient (kL) in an aerated tank stirred by two Rushton turbines on common shaft are presented. Liquid media used were distilled water and 0.5 M sodium sulphate solution. Volumetric mass transfer coefficient (kLa) was measured by the dynamic pressure method with pure oxygen absorption. Specific interfacial area a was taken from Alves et al. [Chem. Eng. Proc., in press] who measured data on local gas hold-up and local average bubble diameter in the same apparatus and batches. Values of kL are quantitatively interpreted in terms of correlations based on idealized eddy structures of turbulence in the bubble vicinity, namely by “eddy” model by Lamont and Scott [AIChE J. 16 (1970) 513] in the form of kL=0.523(eν/ρ)0.25(D/ν)1/2, which fits the data with the mean deviation of 4.7%. It is shown that the decisive quantity to correlate kL in the stirred tank is power dissipated in the liquid phase rather than the bubble diameter and the slip velocity as assumed by Alves et al.  相似文献   

16.
The overall gas hold up, EG, and bubble size distribution were separated into the particular gas hold up, EGK, and Sauter diameter. dSG. due to “small bubbles” as well as EGG and dSG, due to “intermediate to large bubbles.” Bubbles are defined to be “small” if they remain in the bubbling layer 15 seconds after the gas flow is turned off. The bubbles which leave the layer during this time are considered to be “intermediate to large bubbles.” The time dependences of EG EGK and EGG, as well as of bubble size distribution after initiating the aeration of the liquid, is investigated. The steady state EG, EGK and EGG, Sauter diameter and specific geometrical surface area of “small” and “intermediate to large” bubbles as well as of the entire bubble population were determined in bubble columns employing 50, 70, 90 and 95% glycerol solutions and perforated plates with different hole diameters (dH = 0.5. 1.0 and 3.0 mm) respectively. In highly viscous media the “small” and “very large” bubble fractions are high. A comparison of the specific geometrical bubble surface areas with the corresponding volumetric mass transfer coefficients, kLa's, measured earlier indicate that the “small” bubbles do not contribute to kLa. The influence of the “small” bubbles on the fluiddynamics of the two phase system is discussed.  相似文献   

17.
One of the few exact non-linear solutions applying to adhesive debonding is for the deformations in a pressurized thin plate strip of infinite length subjected over its span to externally applied pressure and temperature. For example, if the ends of the span are clamped (bonded) to a substratum leaving an unbonded span to be loaded by pressure or temperature, critical values of these latter quantities, at which debonding may occur, can be calculated using an energy balance criterion. To date, only the limiting cases of the general thin plate solution have been used to deduce these critical pressure or temperature loadings: (1) the plate thickness to span ratio is sufficiently large that nearly all the strain energy is in bending, i.e., the “thick plate” case, and (2) the opposite case wherein the ratio is sufficiently small that mainly stretching energy is involved, i.e., the “membrane”. This last case, for example, has applications to the adhesion of paints and coatings. The purpose of this paper is to present the results of calculations for pressure criticality over the range of all plate thickness between the aforementioned two previously available limiting cases.  相似文献   

18.
High absorptivity and turbidity interfere with the UV disinfection of apple cider. Three different configurations of flow-through UV reactors were evaluated to overcome this interference. Two approaches were employed: use of an extremely thin film UV reactor and increasing the turbulence within a UV reactor. Multiple-lamp UV reactors including the thin-film laminar flow “CiderSure” (8 lamps) and turbulent flow “Aquionics” (12 lamps) and annular single-lamp “UltraDynamics” reactor were studied. UV disinfection performance in laminar and turbulent flow reactors was compared by evaluation of UV dose delivery. UV fluence rate (irradiance) distribution was calculated using the multiple point source summation method. E. coli K12 was used as a target bacterium in a bioassay, and the log reduction per one pass was determined for each UV reactor. Finally, the UV decimal reduction dose (D10) was calculated by dividing the average UV fluence by log bacterial reduction per pass. Variations of the UV decimal dose were observed with various designs of UV systems. The least inactivation of E. coli K12 but the highest UV decimal reduction dose, ranging from 90 to 150 mJ/cm2, was observed in the Aquionics UV reactor in apple cider with apparent absorption coefficient (a) of 5.7 mm-1. The lower value of UV decimal reduction dose of 7.3-7.8 mJ/cm2 was required for inactivation of E. coli K12 in malate buffer and apple juice in the annular single-lamp UltraDynamics reactor. However, the decimal reduction dose for E. coli K12 in apple cider was significantly higher, about 20.4 mJ/cm2. Similar UV decimal reduction doses from 25.1 to 18.8 mJ/cm2 for inactivation of E. coli K12 were observed in the thin-film 'CiderSure' UV reactor in apple cider with identical absorption coefficient. Mathematical modeling of UV irradiance can improve the evaluation of UV dose delivery and distribution within the reactors.  相似文献   

19.
An approach originally developed to predict and correlate the thermophoretically-augmented submicron particle mass transfer rate to cold surfaces is shown here to account extremely well for the thermophoretically reduced particle mass transfer rate to “overheated” surfaces experiencing either a forced boundary layer (BL)-flow of laminar or turbulent dusty gas. This laminar BL/hot wall situation occurs, e.g., in hot surface/cold envelope chemical reactors used for growing epitaxial silicon layers from mainstreams containing, say, silane vapor and inadvertent submicron dust particles. “Thermo-phoretic blowing” is shown to produce effects on particle concentration BL-structure and wall mass transfer rates identical to those produced by real blowing (transpiration) through a porous wall. Indeed, a “blowing parameter additivity” relationship is proposed to account for the simultaneous effects of both phenomena should they be acting in concert (or in opposition). Exact numerical BL calculations covering the parameter ranges: l≤Tw/Te6, (particle thermophoretic-/gas thermal- diffusivity ratios between )0·1 and 0·8 and particle Schmidt numbers between 100 and 2 × 103 are used to establish the validity of the basic forced convection mass transfer correlations for self-similar laminar BLs and law-of-the-wall turbulent BLs. This includes parametric combinations of immediate engineering interest for which the deposition rate is thermophoretically reduced by no less than 10-decades! The applicability of our correlations to developing BL-situations is then illustrated using a numerical example relevant to wet-steam turbine technology.  相似文献   

20.
The influence of the state of hydration of the proton, from H3O+ in the room-temperature melt, H3O+. CF3SO3, to 1 M aqueous in CF3SO3H solution in water, on the interfacial capacitance behaviour of the Au electrode is reported. The results allow the transition from “molten-salt” to “aqueous-solution” double-layer capacitance behaviour to be evaluated.

At positive potentials, near the potential for onset of surface oxidation of Au by OH, the interfacial capacitance is dominated by a pseudo-capacitance associated with chemisorption of the anion CF3SO3, with charge transfer. At negative potentials in the range in which cathodic H2 evolution occurs, the capacitance varies from ca 23 to ca 50 μF cm−2, with the maximum arising around a degree of proton hydration corresponding to H7O+3.

Cathodic H2 evolution kinetics have been studied from the same proton sources and show characteristic dependences of log io and the heat of activation on the hydration-state of H+. The Tafel slopes decrease with increasing temperature, giving a further example of non-conventional behaviour of the transfer coefficient.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号