共查询到20条相似文献,搜索用时 15 毫秒
1.
With the tremendous increment of traffic in the next generation mobile networks, device to device (D2D) communication is proposed to relieve the traffic burden of the base station and improve the overall network capacity. It supports direct communications between devices and could reuse the resources of cellular users (CUs). Despite the advantages, D2D communications bring great challenges in interference management. In this paper, we study the power control and channel allocation problems in three scenarios: (1) one CU and one D2D pair; (2) one CU and multiple D2D pairs; (3) multiple CUs and multiple D2D pairs. The goal is to coordinate the mutual interferences and maximize the overall network capacity. We derive sufficient conditions to guarantee the efficiency of D2D communications in scenarios with one CU and one D2D pair. We propose the bio-inspired PSO-P power control algorithm for the scenarios with one CU and multiple D2D pairs, and the PSO-CP algorithm for the scenarios with multiple CUs and multiple D2D pairs to jointly assign channels and powers. Simulation results show that the proposed algorithms are efficient in improving the overall network capacity. 相似文献
2.
Spectrum sensing is not always perfect in practical cognitive radio networks. In this paper, two kinds of sensing errors are considered into the channel allocation scheme. Our work focuses on the cases that the channel availability varies fast during a channel allocation period, in which case the channel dynamics needs to be considered. The sensing errors are modeled to derive the metric of mean delay for each user-channel combination using the vacation queueing model. Further, the optimal resource allocation is determined based on the mean delay metric by bipartite graph matching. The simulation results indicate that the proposed mean delay metric can represent the transmission performance successfully, and the proposed resource allocation scheme is robust to sensing errors. 相似文献
3.
设备到设备(D2D)通信中,不合理的模式选择和信道分配方案会引入干扰,严重时不仅不能体现D2D通信优势,而且还将导致蜂窝用户传输速率下降。针对这一问题,文章提出了一种蜂窝网络中D2D模式选择和信道分配算法。仿真结果表明,新算法能够在有效的平衡蜂窝网络中D2D用户接入率和系统总吞吐量的同时,最小化用户之间的干扰。 相似文献
4.
Wireless Networks - This paper presents a novel resource and power allocation scheme for device-to-device (D2D) communications overlaying cellular networks. The proposed scheme is implemented in... 相似文献
5.
A channel allocation algorithm includes channel acquisition and channel selection algorithms. Most of the previous work concentrates on the channel selection algorithm since early channel acquisition algorithms are centralized and rely on a mobile switching center (MSC) to accomplish channel acquisition. Distributed channel acquisition algorithms have received considerable attention due to their high reliability and scalability. However, in these algorithms, a borrower needs to consult with its interference neighbors in order to borrow a channel. Thus, the borrower fails to borrow channels when it cannot communicate with any interference neighbor. In real-life networks, under heavy traffic load, a cell has a large probability to experience an intermittent network congestion or even a communication link failure. In existing distributed algorithms, since a cell has to consult with a large number of interference neighbors to borrow a channel, the failure rate will be much higher under heavy traffic load. Therefore, previous distributed channel allocation algorithms are not suitable for real-life networks. We first propose a fault-tolerant channel acquisition algorithm which tolerates communication link failures and node (MH or MSS) failures. Then, we present a channel selection algorithm and integrate it into the distributed acquisition algorithm. Detailed simulation experiments are carried out in order to evaluate our proposed methodology. Simulation results show that our algorithm significantly reduces the failure rate under network congestion, communication link failures, and node failures compared to nonfault-tolerant channel allocation algorithms. Moreover, our algorithm has low message overhead compared to known distributed channel allocation algorithms, and outperforms them in terms of failure rate under uniform as well as nonuniform traffic distribution 相似文献
6.
文中提出了一种适用于蜂窝通信网的分布式无线信道分配方法。当网络部署环境中出现干扰后,终端用户通过控制信道,发送反馈信息至基站;基站接收到反馈信息后,对可用信道进行扫频,利用广播帧通知受干扰的终端用户可用信道信息;然后终端用户收到基站发送的广播帧后,根据优先级机制,选择新的信道重新建立与基站的通信,当蜂窝通信网中终端用户受外部干扰而信道中断后,该方法可减少终端用户和基站之间信令的开销。 相似文献
7.
Enhancing system capacity while maintaining quality of service is an important issue in wireless cellular networks. In this paper, we present a new localized channel sharing scheme to address this problem. Our basic idea is to allow channels to be shared between adjacent cells. We further propose a fixed channel assignment scheme to maximize channel reuse efficiency while allowing channel sharing. We show that our sharing scheme can also facilitate handoff processing. An important feature of our sharing scheme is that channel management is localized between adjacent cells, and no global coordination or optimization is required, thus making it suitable for implementation. We provide simulation results comparing our scheme with the conventional channel assignment and handoff techniques. We find that our scheme improves system capacity over a broad range of traffic parameters and a variety of quality of service requirements. 相似文献
8.
In this paper we develop distributed approaches for power allocation and scheduling in wireless access networks. We consider a model where users communicate over a set of parallel multi-access fading channels, as in an orthogonal frequency division multiple access (OFDMA) system. At each time, each user must decide which channels to transmit on and how to allocate its power over these channels. We give distributed power allocation and scheduling policies, where each user’s actions depend only on knowledge of their own channel gains. Assuming a collision model for each channel, we characterize an optimal policy which maximizes the system throughput and also give a simpler sub-optimal policy. Both policies are shown to have the optimal scaling behavior in several asymptotic regimes. Xiangping Qin received the B.S. and M.S. degrees in Electrical Engineering from Tsinghua University,China in 1998 and 2000 respectively, and the Ph.D. degree in Electrical Engineering from Northwestern University in 2005. She is currently a senior engineer at Samsung Information Systems America. In 2005/2006, She was a postdoctoral associate in the Department of Electrical and Computer Engineering at Boston University. In 2004, she was an intern on the technical staff of Intel Cooperate Technology Laboratory, Oregon. Her primary research interests include wireless communication and data networks. She is the recipient of aWalter P. Murphy Fellowship for the 2000/2001 academic year from the ECE Department at Northwestern University. Randall A. Berry received the B.S. degree in Electrical Engineering from the University of Missouri-Rolla in 1993 and the M.S. and Ph.D. degrees in Electrical Engineering and Computer Science from the Massachusetts Institute of Technology in 1996 and 2000, respectively. In September 2000, he joined the faculty of Northwestern University, where he is currently an Associate Professor in the Department of Electrical Engineering and Computer Science. In 1998 he was on the technical staff at MIT Lincoln Laboratory in the Advanced Networks Group, where he worked on optical network protocols. His current research interests include wireless communication, data networks and information theory. Dr. Berry is the recipient of a 2003 NSF CAREER award and the 2001-02 best teacher award from the ECE Department at Northwestern. He is currently serving on the editorial board of IEEE Transactions on Wireless Communications and is a guest editor of an upcoming special issue of IEEE Transactions on Information Theory on “Relaying and Cooperation in Networks.” 相似文献
9.
A channel allocation algorithm in a cellular network consists of two parts: a channel acquisition algorithm and a channel selection algorithm. Some of the previous works in this field focused on centralized approaches to allocating channels. But, centralized approaches are neither scalable nor reliable. Recently, distributed dynamic channel allocation algorithms have been proposed, and they have gained a lot of attention due to their high reliability and scalability. But, in most of the algorithms, the cell that wants to borrow a channel has to wait for replies from all its interference neighbors and, hence, is not fault-tolerant. In this paper, we propose a new algorithm that is fault-tolerant and makes full use of the available channels. It can tolerate the failure of mobile nodes as well as static nodes without any significant degradation in service. 相似文献
10.
基于基站功率控制的传统信道资源分配模型,采用的帧结构中的两跳链路处于同一时隙中,不能在一帧中完成链路的数据传递,导致系统信道资源分配业务传递滞后。提出基于资源复用的蜂窝网络信道资源分配模型,蜂窝网络采用帧结构向这些通信链路分配时频资源,通过资源复用形式降低蜂窝网络的信道分配资源消耗,在一帧中实现两跳链路的信道分配数据传递。依据扰动的Greedy算法思想,按照带有扰动的信道质量矩阵,实现蜂窝网络信道分配。处于同扇区的两个中继节点间通过动态资源分配方法,按照小区信道的业务情况动态分配信道资源。通过仿真实验分析对比信道分配需求量、阻塞率、收敛性、网络吞吐量、网络节点间通信中断概率五项指标。仿真结果表明,所设计蜂窝网络信道分配模型在对蜂窝网络信道资源进行信道分配过程中,信道资源的使用率增强,分配资源消耗低,信道分配质量提高,具有较高的业务实时性。 相似文献
11.
In this paper, the outage probability (OP) performance of multiple-relay-based incremental amplify-and-forward relaying device-to-device networks with transmit antenna selection (TAS) over N-Nakagami fading channels is investigated. The exact closed-form expressions for OP of the optimal and suboptimal TAS schemes are derived. The power allocation problem is formulated for performance optimization. Then the OP performance under different conditions is evaluated through numerical simulations to verify the analysis. The simulation results showed that optimal TAS scheme has a better OP performance than suboptimal TAS scheme, but the performance gap between the optimal and suboptimal schemes diminishes by increasing the number of antennas at the source; the fading coefficient, the number of cascaded components, the relative geometrical gain, the number of antennas, and the power-allocation parameter have an important influence on the OP performance. 相似文献
12.
We investigate the problem of resource block (RB) and power allocation jointly and in a distributed manner using game theoretic learning solutions, in an underlay device-to-device network where device pairs communicate directly with each other by reusing the spectrum allocated to the cellular users. We formulate the joint RB and power allocation as multi-agent learning problems with discrete strategy sets; and suggest partially distributed and fully distributed learning algorithms to determine the RB and power level to be used by each device pair. The partially distributed algorithms, viz., Fictitious Play and its variant Fading Memory Joint Strategy Fictitious Play with Inertia, achieve Nash Equilibrium (NE) of the sum-rate maximization game in a static wireless environment. The completely distributed and uncoupled Stochastic Learning Algorithm converges to pure strategy NE of the interference mitigation game in a time-varying radio environment. We provide proofs for the existence of NE and convergence of the learning algorithms to the NE. Performance of the proposed schemes are evaluated in log-normal, Rayleigh and Nakagami fading environments and compared with an existing hybrid scheme and a centralized scheme. The simulation results show that the partially distributed schemes give the same performance as the centralized scheme, and the fully distributed scheme gives similar performance as the hybrid scheme but with much reduced signaling and computation overhead. 相似文献
13.
Underlaying device-to-device (D2D) communication is suggested as a promising technology for the next generation cellular networks (5G), where users in close proximity can transmit directly to one another bypassing the base station. However, when D2D communications underlay cellular networks, the potential gain from resource sharing is highly determined by how the interference is managed. In order to mitigate the resource reuse interference between D2D user equipment and cellular user equipment in a multi-cell environment, we propose a resource allocation scheme and dynamic power control for D2D communication underlaying uplink cellular network. Specifically, by introducing the fractional frequency reuse (FFR) principle into the multi-cell architecture, we divide the cellular network into inner region and outer region. Combined with resource partition method, we then formulate the optimization problem so as to maximize the total throughput. However, due to the coupled relationship between resource allocation and power control scheme, the optimization problem is NP-hard and combinational. In order to minimize the interference caused by D2D spectrum reuse, we solve the overall throughput optimization problem by dividing the original problem into two sub-problems. We first propose a heuristic resource pairing algorithm based on overall interference minimization. Then with reference to uplink fractional power control (FPC), a dynamic power control method is proposed. By introducing the interference constraint, we use a lower bound of throughput as a cost function and solve the optimal power allocation problem based on dual Lagrangian decomposition method. Simulation results demonstrate that the proposed algorithm achieves efficient performance compared with existing methods. 相似文献
14.
D2D通信作为5G移动通信的关键技术,以其能有效提升系统能量效率和频谱效率而备受瞩目。在系统中存在被动窃听者的情况下,D2D带来的干扰也被视为友好干扰来提升蜂窝系统的物理层安全性能。但如果存在的是主动窃听者, D2D带来的干扰就会影响蜂窝系统安全稳健的传输性能。因此本文考虑在系统中存在可以智能选择被动窃听或主动干扰的攻击者的情况下,通过选择最佳的D2D用户并采取协同中继或友好干扰的策略来提升在被动窃听情况下蜂窝网络的安全可达速率和在主动干扰下的数据传输速率,来改进蜂窝系统通信的鲁棒性和安全性。本文将合法用户和主动窃听者之间的相互作用建模为非零和的非协作混合博弈,分析了此混合博弈的纳什均衡的存在性,并通过基于fictitious play(虚拟对策)的算法获得了其纳什均衡解。仿真结果表明该算法优于传统的nearest neighbor(最近距离)算法,并且联合考虑两种D2D协作方式的策略优于只将D2D用户视为友好干扰或是协同中继的策略。 相似文献
15.
Great interest in recent years has been devoted to mobile communications. The research effort has been directed to increasing the capacity of radio systems by applying space reuse techniques. Higher efficiency in the usage of the available frequency spectrum can be obtained either by reducing the cell size, thus requiring the provision of new base stations, or by reusing the available spectrum more efficiently without cell size reduction. In this paper we present a dynamic frequency allocation algorithm for cellular networks that exploits a given reuse pattern. The performance of the proposed scheme, in terms of blocking probability, is evaluated by means of computer simulations both when the position of the mobiles remains unchanged and when mobility is taken into account, under both uniform and hotspot traffic. The numerical results show that the capacity of the proposed scheme is sensibly higher than that of a dynamic channel allocation without reuse partitioning. The effects of both user mobility and reuse partitioning on the signalling load are also considered. 相似文献
16.
User-relay assisted orthogonal frequency division multiple access (OFDMA) networks are cost-effective solutions to meet the growing capacity and coverage demands of the next generation cellular networks. These networks can be used with multiple antennas technology in order to obtain a diversity gain to combat signal fading and to obtain more capacity gain without increasing the bandwidth or transmit power. Efficient relay selection and resource allocation are crucial in such a multi-user, multi-relay and multi-antenna environment to fully exploit the benefits of the combination of user-relaying and multiple antennas technology. Thus, we propose a channel and queue aware joint relay selection and resource allocation algorithm for multiple-input single-output (MISO)-OFDMA based user-relay assisted downlink cellular networks. Since, the proposed algorithm is not only channel but also queue-aware, the system resources are allocated efficiently among the users. The proposed algorithm for the MISO-OFDMA based user-relay assisted scheme is compared to existing MISO-OFDMA based non-relaying and fixed relay assisted schemes and it is also compared with the existing single-input single-output (SISO)-OFDMA based user-relay assisted scheme. Simulation results revealed that the proposed scheme outperforms the existing schemes in terms of cell-edge users’ total data rate, average backlog and average delay. 相似文献
17.
In this paper a new control-period-based distributed adaptive guard channel reservation (CDAGCR) technique is proposed to meet the call admission level quality-of-service (QoS) in wireless cellular networks. It partitions the real time into control periods. Handoffs during the current control period is used to reserve guard channels at the beginning of the next control period. Efficient mechanisms are devised to adaptively vary the length of the control period which further regulates the number of guard channels used to meet the call admission level QoS. The BSC associated with the cell site can do this exclusively without generating any signal overhead for information exchange among cell sites unlike the schemes described in [ 1– 4]. Thus, the CDAGCR scheme is amenable to a fully distributed implementation. Extensive simulation studies have been carried out with an emulated test bed to investigate the performance of this CDAGCR scheme. It is found that this CDAGCR scheme keeps the handoff call drop probability below the targeted QoS with comparable new call blocking by adaptively varying the length of the control period. The simulation results appear promising. 相似文献
18.
This paper investigates the problem of joint interference management and resource allocation in device-to-device (D2D) uplink underlaying cellular networks. To improve the D2D system sum throughput, an overlapping coalition formation game (OCFG) is proposed to achieve resource allocation. In the game, a novel initialization in term of the priority sequence is proposed to rapidly form the initial coalitions. During the coalition formation, the merging and splitting sequences are adopted to guide the order that D2D users merge in or split from the coalition. Here the splitting sequences are formed according to cross-tier interference strength and the merging sequence is based on matching theory. Besides, a power control scheme is formulated to optimize the power allocation. The performance of the proposed algorithm is analyzed and verified through simulations. 相似文献
19.
This paper is focused on the optimization of transmitted power in a cooperative decoded relaying scheme for nodes belonging to the single primary route towards. a destination. The proposed transmission protocol, referred to as Multihop Cooperative Transmission Chain (MCTC), is based on the linear combination of copies of the same message by multiple previous terminals along the route in order to maximize the multihop diversity. Power allocations among transmitting nodes in the route can be obtained according to the average (not instantaneous) node-to-node path attenuation using a recursive power assignment. The latter can be employed locally on each node with limited signalling exchange (for fixed or nomadic terminals) among nodes. In this paper the power assignments for the MCTC strategy employing conventional linear combining schemes at receivers (i.e., selection combining, maximal ratio combining and equal gain combining) have been derived analytically when the power optimization is constrained to guarantee the end-to-end outage probability. In particular, we show that the power assignment that minimize the maximum spread of received power (min-max strategy) can efficiently exploit the multihop diversity. In addition, for ad hoc networks where the energy of each node is an issue, the MCTC protocol with the min-max power assignment increases considerably the network lifetime when compared to non-cooperative multihop schemes 相似文献
20.
Wireless Networks - In this study, device-to-device (D2D) communication is exploited to adopt the proximity transmission among two nearby devices. The base station in this scenario transmits both... 相似文献
|