首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 156 毫秒
1.
Android恶意软件的几何式增长驱动了Android恶意软件自动检测领域的发展。一些工作从可解释性的角度来分析Android恶意软件,通过分析模型获取最大影响的特征,为深度学习模型提供了一定的可解释性。这些方法基于特征相互独立的强假设,仅仅考虑特征各自对模型的影响,而在实际中特征之间总是存在着耦合,仅考虑单个特征对模型的影响,难以反映耦合作用,不能刻画不同类型软件中敏感API的组合模式。为解决该问题,将Android软件刻画成图,并结合图的结构信息和图节点内部的信息提出了一种基于图嵌入的方法来检测Android恶意软件。该方法通过注意力机制学习Android软件的低维稠密嵌入表示。实验结果表明,使用学到的嵌入表示进行恶意软件检测,不仅具有较高的分类精度,还可以通过分析注意力分数较大的路径寻找影响模型决策的模式以及定位恶意行为所涉及的敏感API序列。  相似文献   

2.
融合多特征的Android恶意软件检测方法   总被引:1,自引:0,他引:1  
针对当前基于机器学习的Android恶意软件检测方法特征构建维度单一,难以全方位表征Android恶意软件行为特点的问题,文章提出一种融合软件行为特征、Android Manifest.xml文件结构特征和Android恶意软件分析经验特征的恶意软件检测方法。该方法提取Android应用的Dalvik操作码N-gram语义信息、系统敏感API、系统Intent、系统Category、敏感权限和相关经验特征,多方位表征Android恶意软件的行为并构建特征向量,采用基于XGBoost的集成学习算法构建分类模型,实现对恶意软件的准确分类。在公开数据集DREBIN和AMD上进行实验,实验结果表明,该方法能够达到高于97%的检测准确率,有效提升了Android恶意软件的检测效果。  相似文献   

3.
由于Android系统的开放性,恶意软件通过实施各种恶意行为对Android设备用户构成威胁。针对目前大部分现有工作只研究粗粒度的恶意应用检测,却没有对恶意应用的具体行为类别进行划分的问题,提出了一种基于静态行为特征的细粒度恶意行为分类方法。该方法提取多维度的行为特征,包括API调用、权限、意图和包间依赖关系,并进行了特征优化,而后采用随机森林的方法实现恶意行为分类。在来自于多个应用市场的隶属于73个恶意软件家族的24 553个恶意Android应用程序样本上进行了实验,实验结果表明细粒度恶意应用分类的准确率达95.88%,综合性能优于其它对比方法。  相似文献   

4.
针对Android恶意软件检测存在特征引入过程主观性高、特征选择过程可解释性差、训练模型检测效果不具备时间稳定性的问题,提出了一种面向概念漂移的可解释性Android恶意软件检测方法InterDroid,该方法首先通过高质量的人工Android恶意软件分析报告引入权限、API包名、意图、Dalvik字节码4种特征.并通过自动化机器学习算法TPOT(tree-based tipeline optimization tool)获得InterDroid训练及对比算法,从而摒弃传统方法中繁复的模型选择与参数调整过程.其后,融入模型解释算法SHAP(shapley additive explanations)改进传统的特征包装方法,从而获得对分类结果具有高贡献度的特征组合用于检测模型训练最后,通过曼-惠特尼U(Mann-Whitney U,MWU)与机器学习模型的双重检验证明概念漂移现象在Android恶意软件检测中的存在性.并基于联合分布适配(joint distribution adaptation,JDA)算法提高检测模型对新时期Android恶意软件的检测准确率.实验表明:InterDroid筛选出的特征组合具备稳定性与可解释性.同时,InterDroid中的特征迁移模块可将自身对2019年、2020年新兴Android恶意软件的检测准确率分别提高46%,44%.  相似文献   

5.
由于智能手机使用率持续上升促使移动恶意软件在规模和复杂性方面发展更加迅速。作为免费和开源的系统,目前Android已经超越其他移动平台成为最流行的操作系统,使得针对Android平台的恶意软件数量也显著增加。针对Android平台应用软件安全问题,提出了一种基于多特征协作决策的Android恶意软件检测方法,该方法主要通过对Android 应用程序进行分析、提取特征属性以及根据机器学习模型和分类算法判断其是否为恶意软件。通过实验表明,使用该方法对Android应用软件数据集进行分类后,相比其他分类器或算法分类的结果,其各项评估指标均大幅提高。因此,提出的基于多特征协作决策的方式来对Android恶意软件进行检测的方法可以有效地用于对未知应用的恶意性进行检测,避免恶意应用对用户所造成的损害等。  相似文献   

6.
Android 系统正日益面临着恶意软件的攻击威胁。针对支持向量机等传统机器学习方法难以有效进行大样本多分类的恶意软件检测,提出一种基于深度神经网络的Android恶意软件检测与家族分类方法。该方法在全面提取应用组件、Intent Filter、权限、数据流等特征基础上,进行有效的特征选择以降低维度,基于深度神经网络进行面向恶意软件的大样本多分类检测。实验结果表明,该方法能够进行有效检测和分类,良性、恶意二分类精度为 97.73%,家族多分类精度可达到 93.54%,比其他机器学习算法有更好的分类效果。  相似文献   

7.
针对当前Android平台资源受限及恶意软件检测能力不足这一问题,以现有Android安装方式、触发方式和恶意负载方面的行为特征为识别基础,构建了基于ROM定制的Android软件行为动态监控框架,采用信息增益、卡方检验和Fisher Score的特征选择方法,评估了支持向量机(SVM)、决策树、k-邻近(KNN)和朴素贝叶斯(NB)分类器四类算法在Android恶意软件分类检测方面的有效性。通过对20916个恶意样本及17086个正常样本的行为日志的整体分类效果进行评估,结果显示,SVM算法在恶意软件判定上准确率可以达到93%以上,误报率低于2%,整体效果最优。可应用于在线云端分析环境和检测平台,满足海量样本处理需求。  相似文献   

8.
传统机器学习在恶意软件分析上需要复杂的特征工程,不适用于大规模的恶意软件分析。为提高在Android恶意软件上的检测效率,将Android恶意软件字节码文件映射成灰阶图像,综合利用深度可分离卷积(depthwise separable convolution,DSC)和注意力机制提出基于全局注意力模块(GCBAM)的Android恶意软件分类模型。从APK文件中提取字节码文件,将字节码文件转换为对应的灰阶图像,通过构建基于GCBAM的分类模型对图像数据集进行训练,使其具有Android恶意软件分类能力。实验表明,该模型对Android恶意软件家族能有效分类,在获取的7 630个样本上,分类准确率达到98.91%,相比机器学习算法在准确率、召回率等均具有较优效果。  相似文献   

9.
谢丽霞  李爽 《计算机应用》2018,38(3):818-823
针对Android恶意软件检测中数据不平衡导致检出率低的问题,提出一种基于Bagging-SVM(支持向量机)集成算法的Android恶意软件检测模型。首先,提取AndroidManifest.xml文件中的权限信息、意图信息和组件信息作为特征;然后,提出IG-ReliefF混合筛选算法用于数据集降维,采用bootstrap抽样构造多个平衡数据集;最后,采用平衡数据集训练基于Bagging算法的SVM集成分类器,通过该分类器完成Android恶意软件检测。在分类检测实验中,当良性样本和恶意样本数量平衡时,Bagging-SVM和随机森林算法检出率均高达99.4%;当良性样本和恶意样本的数量比为4:1时,相比随机森林和AdaBoost算法,Bagging-SVM算法在检测精度不降低的条件下,检出率提高了6.6%。实验结果表明所提模型在数据不平衡时仍具有较高的检出率和分类精度,可检测出绝大多数恶意软件。  相似文献   

10.
Android操作系统是目前移动设备中的主流操作系统之一。它拥有庞大的用户群,因此也出现了许多恶意的Android软件。每年,研究人员都会提出一些新的Android恶意软件分析框架来防御现实世界的Android恶意软件应用程序。论文使用主流的深度学习算法,构建了合适的神经网络,并在网络层之间增加修正线性单元,实现了Android恶意软件的检测和分类。通过对网络的训练,最终得到了一个比较好的恶意检测器(二元分类器)和三个多分类器的结果——基于静态恶意软件二分类器的准确率为95.74%,多分类器的准确率为92.98%,基于动态的恶意软件大类多分类器的准确率为84.48%,基于动态的恶意软件家族小类多分类器的准确率为60.34%。  相似文献   

11.
当前Android恶意应用程序在传播环节缺乏有效的识别手段,对此提出了一种基于自动化测试技术和动态分析技术的Android恶意行为检测方法。 通过自动化测试技术触发Android应用程序的行为,同时构建虚拟的沙箱监控这些行为。设计了一种组合事件行为触发模型——DroidRunner,提高了Android应用程序的代码覆盖率、恶意行为的触发率以及Android恶意应用的检测率。经过实际部署测试,该方法对未知恶意应用具有较高的检测率,能帮助用户发现和分析未知恶意应用。  相似文献   

12.
面对不断涌现的安卓恶意应用,虽然大量研究工作采用图神经网络分析代码图实现了准确高效的恶意应用检测,但由于未提供应用内恶意代码的具体位置信息,难以对后续的人工复核工作提供有效帮助.可解释技术的出现为此问题提供了灵活的解决方法,在基于不同类型神经网络及代码特征表示实现的检测模型上展示出了较好的应用前景.本研究聚焦于基于图神经网络的安卓恶意代码检测模型上,使用可解释技术实现安卓恶意代码的准确定位:(1)提出了基于敏感API及多关系图特征的敏感子图提取方法.根据敏感API,控制流逻辑以及函数调用结构三类特征与恶意代码子图分布的关联性,细致刻画恶意代码特征,精简可解释技术关注的代码图规模;(2)提出了基于敏感子图输入的可解释技术定位方法.使用基于扰动原理的可解释技术,在不改变检测模型结构的情况下对代码图边缘进行恶意性评分,为各类基于图神经网络安卓恶意代码检测提供解释定位;(3)设计实验验证敏感子图提取对于与恶意代码特征的刻画效果以及基于敏感子图提取的解释定位效果.实验结果显示,本文的敏感子图提取方法相较于MsDroid固定子图半径的方法更为精确,能够为可解释技术提供高质量的输入;基于此方法改进后得到的可解释技术定位方法相较于GNNExplainer通用解释器及MsDroid定位方法,在保证定位适用性和效率的同时,恶意代码平均定位准确率分别提高了8.8%和2.7%.  相似文献   

13.
Zhu  Hui-Juan  Jiang  Tong-Hai  Ma  Bo  You  Zhu-Hong  Shi  Wei-Lei  Cheng  Li 《Neural computing & applications》2018,30(11):3353-3361

Mobile phones are rapidly becoming the most widespread and popular form of communication; thus, they are also the most important attack target of malware. The amount of malware in mobile phones is increasing exponentially and poses a serious security threat. Google’s Android is the most popular smart phone platforms in the world and the mechanisms of permission declaration access control cannot identify the malware. In this paper, we proposed an ensemble machine learning system for the detection of malware on Android devices. More specifically, four groups of features including permissions, monitoring system events, sensitive API and permission rate are extracted to characterize each Android application (app). Then an ensemble random forest classifier is learned to detect whether an app is potentially malicious or not. The performance of our proposed method is evaluated on the actual data set using tenfold cross-validation. The experimental results demonstrate that the proposed method can achieve a highly accuracy of 89.91%. For further assessing the performance of our method, we compared it with the state-of-the-art support vector machine classifier. Comparison results demonstrate that the proposed method is extremely promising and could provide a cost-effective alternative for Android malware detection.

  相似文献   

14.
针对Android恶意软件持续大幅增加的现状以及恶意软件检测能力不足这一问题,提出了一种基于非用户操作序列的静态检测方法。首先,通过对恶意软件进行逆向工程分析,提取出恶意软件的应用程序编程接口(API)调用信息;然后,采用广度优先遍历算法构建恶意软件的函数调用流程图;进而,从函数流程图中提取出其中的非用户操作序列形成恶意行为库;最后,采用编辑距离算法计算待检测样本与恶意行为库中的非用户操作序列的相似度进行恶意软件识别。在对360个恶意样本和300的正常样本进行的检测中,所提方法可达到90.8%的召回率和90.3%的正确率。与Android恶意软件检测系统Androguard相比,所提方法在恶意样本检测中召回率提高了30个百分点;与FlowDroid方法相比,所提方法在正常样本检测中准确率提高了11个百分点,在恶意样本检测中召回率提高了4.4个百分点。实验结果表明,所提方法提高了恶意软件检测的召回率,有效提升恶意软件的检测效果。  相似文献   

15.
针对当前Android恶意程序检测方法对未知应用程序检测能力不足的问题,提出了一种基于textCNN神经网络模型的Android恶意程序检测方法.该方法使用多种触发机制从不同层面上诱导激发程序潜在的恶意行为;针对不同层面上的函数调用,采用特定的hook技术对程序行为进行采集;针对采集到的行为日志,使用fastText算...  相似文献   

16.
The domination of the Android operating system in the market share of smart terminals has engendered increasing threats of malicious applications (apps). Research on Android malware detection has received considerable attention in academia and the industry. In particular, studies on malware families have been beneficial to malware detection and behavior analysis. However, identifying the characteristics of malware families and the features that can describe a particular family have been less frequently discussed in existing work. In this paper, we are motivated to explore the key features that can classify and describe the behaviors of Android malware families to enable fingerprinting the malware families with these features.We present a framework for signature-based key feature construction. In addition, we propose a frequency-based feature elimination algorithm to select the key features. Finally, we construct the fingerprints of ten malware families, including twenty key features in three categories. Results of extensive experiments using Support Vector Machine demonstrate that the malware family classification achieves an accuracy of 92% to 99%. The typical behaviors of malware families are analyzed based on the selected key features. The results demonstrate the feasibility and effectiveness of the presented algorithm and fingerprinting method.  相似文献   

17.
This article presents Andromaly—a framework for detecting malware on Android mobile devices. The proposed framework realizes a Host-based Malware Detection System that continuously monitors various features and events obtained from the mobile device and then applies Machine Learning anomaly detectors to classify the collected data as normal (benign) or abnormal (malicious). Since no malicious applications are yet available for Android, we developed four malicious applications, and evaluated Andromaly’s ability to detect new malware based on samples of known malware. We evaluated several combinations of anomaly detection algorithms, feature selection method and the number of top features in order to find the combination that yields the best performance in detecting new malware on Android. Empirical results suggest that the proposed framework is effective in detecting malware on mobile devices in general and on Android in particular.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号