首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In this paper we present the trapping of photogenerated charge carriers for 300 s resulted by their direct exchange under illumination between a few silicon nanocrystals (ncs-Si) embedded in an oxide tunnel layer (SiOx = 1.5) and the tunnel oxide traps levels for a single electron photodetector (photo-SET or nanopixel). At first place, the presence of a photocurrent limited in the inversion zone under illumination in the I–V curves confirms the creation of a pair electron/hole (e–h) at high energy. This photogenerated charge carriers can be trapped in the oxide. Using the capacitance-voltage under illumination (the photo-CV measurements) we show a hysteresis chargement limited in the inversion area, indicating that the photo-generated charge carriers are stored at traps levels at the interface and within ncs-Si. The direct exchange of the photogenerated charge carriers between the interface traps levels and the ncs-Si contributed on the photomemory effect for 300 s for our nanopixel at room temperature.  相似文献   

2.
A. A. Andreev 《Semiconductors》2008,42(11):1334-1337
Current-voltage (I–V) characteristics of p-i-n structures based on amorphous silicon (α-Si:H) with small hole diffusion lengths (shorter than the thickness of the i-layer of a p-i-n structure) have been experimentally studied with and without illumination. It is shown that forward I–V characteristics of structures of this kind can be described by a dependence inherent in diodes, with a diode ideality factor two-three times the maximum value of 2, theoretically predicted for generation-recombination currents in p-n junctions. The dark current is always substantially lower than the photocurrent in a cell biased with a voltage approximately equal to the opencircuit voltage of the photocell. Dark currents cannot contribute to the I–V characteristic under illumination. The photocurrent decreases with increasing photovoltage at a bias lower than the open-circuit voltage because of a decrease in the collection coefficient and the increasingly important role of back diffusion of electrons into the p-contact, rather than as a result of the dark injection. In the case of biases exceeding the open-circuit voltage, back diffusion becomes the predominant component of the current.  相似文献   

3.
4.
The current–voltage (I–V) and photocurrent–light intensity (I pc –Φ) characteristics and the photoconductivity relaxation kinetics of TlInSe2 single crystals are investigated. Anomalously long relaxation times (τ ≈ 103 s) and some other specific features of the photoconductivity are observed, which are explained within the barrier theory of inhomogeneous semiconductors. The heights of the drift and recombination barriers are found to be, respectively, E dr ≈ 0.1 eV and E r ≈ 0.45 eV.  相似文献   

5.
The current-voltage (I–V) and spectral characteristics of a photocurrent are studied at T=4.2 and 300 K for an unstrained GaAs/ZnSe/QD-Ge/ZnSe/Al structure with tunneling-transparent ZnSe layers and Ge quantum dots (QDs). Features such as the Coulomb staircase were observed in I–Vcharacteristics at room temperature and in the absence of illumination. An energy-band diagram of the structure is constructed based on an analysis of the experimental data. In the GaAs/ZnSe/QD-Ge/ZnSe/p-Ge transistor structure with a p-Ge channel and Ge-QD floating gate, the total current of the channel both increased and decreased under exposure to light with various spectra. These variations in channel current are associated with the capture of a positive and negative charge at QDs during different optical transitions. The charge accumulation changes the state of a channel at the heterointerface from depletion to inversion and either decreases or increases the total current.  相似文献   

6.
This paper reports a study of the current–voltage (I–V) features of the p-i-p structures based on Pb1–xSnxTe:In films with the tin content х ≈ 0.31 in which the metal–insulator transition occurs. It is shown that the photocurrent is the hole current under light interband excitation, and electron trapping is dominant. The experimental and theoretical data are compared.  相似文献   

7.
A mechanism of charge transport in Au-TiB x -n-GaN Schottky diodes with a space charge region considerably exceeding the de Broglie wavelength in GaN is studied. Analysis of temperature dependences of current-voltage (I–V) characteristics of forward-biased Schottky barriers showed that, in the temperature range 80–380 K, the charge transport is performed by tunneling along dislocations intersecting the space charge region. Estimation of dislocation density ρ by the I–V characteristics, in accordance with a model of tunneling along the dislocation line, gives the value ρ ≈ 1.7 × 107 cm?2, which is close in magnitude to the dislocation density measured by X-ray diffractometry.  相似文献   

8.
The I–V characteristics are investigated in the region of high electric fields in MnGaInS4 single crystals. It is shown that the current in the nonlinear portion of the I–V characteristic is caused by the Frenkel thermal-field effect. The permittivity, trap concentration, and potential-well shape are determined.  相似文献   

9.
The conditions for fabricating photosensitive TiN/p-InSe heterojunctions by the reactive-magnetron sputtering of thin titanium-nitride films onto freshly cleaved p-InSe single-crystal substrates is investigated. The presence of a tunnel-transparent high-resistivity In2Se3 layer at the heterojunction is revealed from analysis of the I–V characteristics, and the effect of this layer on the electrical properties and photosensitivity spectra of the heterostructures is analyzed. The dominant current transport mechanisms through the TiN/p-InSe energy barrier under forward and reverse bias are determined.  相似文献   

10.
We have investigated the structural and electrical characteristics of the Ag/n-TiO2/p-Si/Al heterostructure. Thin films of pure TiO2 were deposited on p-type silicon (100) by optimized pulsed laser ablation with a KrF-excimer laser in an oxygen-controlled environment. X-ray diffraction analysis showed the formation of crystalline TiO2 film having a tetragonal texture with a strong (210) plane as the preferred direction. High purity aluminium and silver metals were deposited to obtain ohmic contacts on p-Si and n-TiO2, respectively. The current–voltage (IV) characteristics of the fabricated heterostructure were studied by using thermionic emission diffusion mechanism over the temperature range of 80–300 K. Parameters such as barrier height and ideality factor were derived from the measured IV data of the heterostructure. The detailed analysis of IV measurements revealed good rectifying behavior in the inhomogeneous Ag/n-TiO2/p-Si(100)/Al heterostructure. The variations of barrier height and ideality factor with temperature and the non-linearity of the activation energy plot confirmed that barrier heights at the interface follow Gaussian distributions. The value of Richardson’s constant was found to be 6.73 × 105 Am?2 K?2, which is of the order of the theoretical value 3.2 × 105 Am?2 K?2. The capacitance–voltage (CV) measurements of the heterostructure were investigated as a function of temperature. The frequency dependence (Mott–Schottky plot) of the CV characteristics was also studied. These measurements indicate the occurrence of a built-in barrier and impurity concentration in TiO2 film. The optical studies were also performed using a UV–Vis spectrophotometer. The optical band gap energy of TiO2 films was found to be 3.60 eV.  相似文献   

11.
The I–V characteristics of NiO/CdTe heterostructures fabricated by reactive magnetron sputtering are measured at different temperatures. It is established that current transport through the NiO/CdTe heterojunction is mainly controlled via generation–recombination and tunneling under forward bias and via tunneling under reverse bias. The investigated heterostructures generate an open-circuit voltage of V oc = 0.26 V and a short-circuit current density of I sc = 58.7 μA/cm2 at an illumination intensity of 80 mW/cm2.  相似文献   

12.
The experimental IV and current–illuminance characteristics of the X-ray conductivity and X-ray luminescence of zinc-selenide single crystals feature a nonlinear shape. The performed theoretical analysis of the kinetics of the X-ray conductivity shows that even with the presence of shallow and deep traps for free charge carriers in a semiconductor sample, the integral characteristics of the X-ray conductivity (the current–illuminance and IV dependences) should be linear. It is possible to assume that the nonlinearity experimentally obtained in the IV and current–illuminance characteristics can be caused by features of the generation of free charge carriers upon X-ray irradiation, i.e., the generation of hundreds of thousands of free charge carriers of opposite sign in a local region with a diameter of <1 μm and Coulomb interaction between the free charge carriers of opposite signs.  相似文献   

13.
The features of the radiation-stimulated changes in the IV and CV characteristics of the emitter–base junction in KT3117 transistors are considered. It is shown that an increase in the current through the emitter junction is observed at the initial stage of irradiation (at doses of D < 4000 Gy for the “passive” irradiation mode and D < 5200 Gy for the “active” mode), which is caused by the effect of radiation-stimulated ordering of the defect-containing structure of the pn junction. It is also shown that the X-ray irradiation (D < 14000 Gy), the subsequent relaxation (96 h), and thermal annealing (2 h at 400 K) of the transistor temperature sensors under investigation result in an increase in their radiation resistance.  相似文献   

14.
A modified Schottky-barrier model, which is nonlinear in terms of the surface-state concentration and contains a local quasi-Fermi level at the interface induced by excess surface charge, is proposed. Such an approach makes it possible to explain the observed similarity of the I–V characteristics of diodes with the Schottky barrier M/(SiC)1–x(AlN) x and those of heterojunctions based on SiC and its solid solutions taking into account Φg ≈ ΦB. The results of calculations of the Schottky-barrier heights are consistent with the experimental data obtained from measurements of the photocurrent for metals (M): Al, Ti, Cr, and Ni. The I–V characteristics in the composite–additive model of charge transport agree with the experimental data for the n-M/p-(SiC)1–x(AlN) x and n-6H-SiC/p-(SiC)0.85(AlN)0.15 systems.  相似文献   

15.
The structural, optical, electrical and electrical–optical properties of a double-junction GaAsP light-emitting diode (LED) structure grown on a GaP (100) substrate by using a molecular beam epitaxy technique were investigated. The pn junction layers of GaAs1?xPx and GaAs1?yPy, which form the double-junction LED structure, were grown with two different P/As ratios. High-resolution x-ray diffraction (HRXRD), photoluminescence (PL), and current–voltage (IV) measurements were used to investigate the structural, optical and electrical properties of the sample. Alloy composition values (x, y) and some crystal structure parameters were determined using HRXRD measurements. The phosphorus compositions of the first and second junctions were found to be 63.120% and 82.040%, respectively. Using PL emission peak positions at room temperature, the band gap energies (Eg) of the first and second junctions were found to be 1.867 eV and 2.098 eV, respectively. In addition, the alloy compositions were calculated by Vegard’s law using PL measurements. The turn-on voltage (Von) and series resistance (Rs) of the device were obtained from the IV measurements to be 4.548 V and 119 Ω, respectively. It was observed that the LED device emitted in the red (664.020 nm) and yellow (591.325 nm) color regions.  相似文献   

16.
Methods for measuring the current-voltage characteristics (I–V curves) of photodiodes in a 6 × 576 mercury-cadmium-tellurium (MCT) multirow photodetector designed for operation in the longwave part of the infrared (IR) spectral range are analyzed. The I–V curve is plotted using the resultes of measurements of output signals of a large-scale readout integrated circuit (ROIC) hybridized with a row of IR photodiodes. The method of independent current measurement at each point of the I–V curve is compared to the method of additive current measurements. A method of determining optimum working points of photodiodes by plotting and analyzing the dependence of the differential resistance of photodiode on the bias voltage is proposed. Distributions of photodiode currents for a sample of a 6 × 576-element focal plane array (FPA) based on MCT photodiodes with a p-type conductivity substrate having the cutoff wavelength of λ0.5 = 10.5 μm are considered.  相似文献   

17.
The temperature dependence of the Schottky-barrier height and series resistance of two-terminal thin-film Al/nano-Si film/ITO structures are determined from the current—voltage (I–V) characteristics in the temperature range of 20–150°C. It is found that the form of the I–V characteristic at all investigated temperatures can be described by a model of two Schottky diodes connected back-to-back. For these diodes, the general formula is obtained, which allows the construction of functions approximating experimental curves with high accuracy. Based on this formula, a computational model is built, which generalizes the theoretical data obtained by S.K. Cheung and N.W. Cheung widely used for analyzing the I–V characteristics of single Schottky diodes. A technique is developed for calculating the Schottky-barrier heights in a system of two Schottky diodes connected back-to-back, their ideality factors, and the series resistance of the system. It is established that the barrier heights in the investigated temperature range are ~1 eV. According to the temperature dependence of the barrier height, such large values result from the presence of a SiO x (0 ≤ x ≤ 2) oxide layer at the nanoparticle boundaries. Charge carriers can overcome this layer by means of thermal excitation or tunneling. It is established that the intrinsic Schottky-barrier height of the Al/nc-Si film and nc-Si film/ITO junctions is ~0.1 eV. The activation dependences of the series resistance of the Al/nc-Si film/ITO structures and impedance spectra show that combined electric-charge transport related to ionic and electronic conductivity takes place in the structures under study. It is shown that the contribution of the electronic conductivity to the total transport process increases as the sample temperature is raised.  相似文献   

18.
Results regarding bifacial silicon solar cells with external busbars are presented. The cells consist of [n+p(n)p+] Cz-Si structures with a current-collecting system of new design: a laminated grid of wire external busbars (LGWEB). A LGWEB consists of a transparent conducting oxide film deposited onto a Si structure, busbars adjacent to the Si structure, and a contact wire grid attached simultaneously to the oxide and busbars using the low-temperature lamination method. Bifacial LGWEB solar cells demonstrate record high efficiency for similar devices: 17.7%(n-Si)/17.3%(p-Si) with 74–82% bifaciality for the smooth back surface and 16.3%(n-Si)/16.4%(p-Si) with 89% bifaciality for the textured back surface. It is shown that the LGWEB technology can provide an efficiency exceeding 21%.  相似文献   

19.
An experimental study of the capacitance–voltage (C–V) characteristics and deep-level transient spectroscopy (DLTS) of p+p0in0 structures based on undoped GaAs, grown by liquid-phase epitaxy at two crystallization-onset temperatures To (950 and 850°C), with optical illumination switched off and on, are performed. It is shown that the p0, i, and n0 layers of epitaxial structures are characterized by the presence of defects with deep donor- and acceptor-type levels in concentrations comparable with those of shallow donors and acceptors. Interface states are found, which manifest themselves in the C–V characteristics at different measurement temperatures and optical illumination; these states form an additive constant. A distinct temperature dependence of the steady-state capacitance of the structures is revealed. It is found that the injection of minority carriers under an applied positive filling pulse and optical recharging lead to modification of the structure and, correspondingly, the DLTS spectra of the p+p0in0 structures. It is revealed that the p+p0in0 GaAs structures grown at To = 850°C are characterized by a lack of interface states and that the recharging of acceptor-type deep traps under illumination does not change the C–V characteristics. The conventionally measured DLTS spectra reveal the presence of two hole traps: HL5 and HL2, which are typical of GaAs layers.  相似文献   

20.
The results of studying a HIT (heterojunction with an intrinsic thin layer) Ag/ITO/a-Si:H(p)/a-Si:H(i)/c-Si(n)/a-Si:H(i)/a-Si:H(n+)/ITO/Ag solar cell by the capacitance–voltage characteristic and current deep-level relaxation transient spectroscopy methods are presented. The temperature dependence of the capacitance–voltage characteristics of the HIT structure and deep-energy-level parameters are studied. The results of comprehensive studies by the above methods are used to determine the features of the energy-band diagram of actual HIT structures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号