首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The temperature and size dependences of the energy gap in CdSe quantum dots with diameters of 2.4, 4.0, and 5.2 nm embedded in fluorophosphate glasses are investigated. It is shown that the temperature coefficient of the band gap dE g /dT in the quantum dots differs from the bulk value and depends strictly on the dot size. It is found that, furthermore, the energy of each transition in these quantum dots is characterized by an individual temperature coefficient dE/dT.  相似文献   

2.
A new modified effective mass approximation is suggested to describe the excitonic energy spectrum of quantum dots of radii a comparable to the exciton Bohr radius a ex 0 . It is shown that, for quantum dots simulated by infinitely deep potential wells, the effective mass approximation is appropriate for describing excitons in quantum dots of radii aa ex 0 , if the reduced effective mass of the excitons, μ, is considered as a function of the radius of the quantum dot a, μ = μ(a).  相似文献   

3.
The distribution of charged centers N(w), quantum efficiency, and electroluminescence spectra of blue and green light-emitting diodes (LED) based on InGaN/AlGaN/GaN p-n heterostructures were investigated. Multiple InGaN/GaN quantum wells (QW) were modulation-doped with Si donors in GaN barriers. Acceptor and donor concentrations near the p-n junction were determined by the heterodyne method of dynamic capacitance to be about N A ≥ 1 × 1019 cm?3 ? N D ≥ 1 × 1018 cm?3. The N(w) functions exhibited maxima and minima with a period of 11–18 (±2–3 nm) nm. The energy diagram of the structures has been constructed. The shifts of spectral peaks with variation of current (J=10?6–3×10?2 A) are smaller (13–12 meV for blue and 20–50 meV for green LEDs) than the corresponding values for the diodes with undoped barriers (up to 150 meV). This effect is due to the screening of piezoelectric fields in QWs by electrons. The dependence of quantum efficiency on current correlates with the charge distribution and specific features in the current-voltage characteristics.  相似文献   

4.
The deposition of In x Ga1–x As with an indium content of 0.3–0.5 and an average thickness of 3–27 single layers on a GaAs wafer by metalorganic chemical vapor deposition (MOCVD) at low temperatures results in the appearance of thickness and composition modulations in the layers being formed. Such structures can be considered to be intermediate nanostructures between ideal quantum wells and quantum dots. Depending on the average thickness and composition of the layers, the wavelength of the photoluminescence peak for the hybrid InGaAs quantum well–dots nanostructures varies from 950 to 1100 nm. The optimal average In x Ga1–x As thicknesses and compositions at which the emission wavelength is the longest with a high quantum efficiency retained are determined.  相似文献   

5.
Tin oxide (SnO2) nanoparticles (TONPs) were prepared using sol–gel method under different growth conditions. The influence of calcination temperature (450°C and 600°C) and molecular weight of polyethylene glycol (PEG 300 and PEG 4000) on the nanocrystallinity, surface morphology, and Raman spectra of as-prepared TONPs were evaluated. Variation of calcination temperature and dopant (sulfosuccinic acid, SA) was found to affect considerably the structure, surface morphology, and Raman activities of the TONPs. The size of TONPs estimated using Scherrer equation was discerned to be in the range of 15–32 nm. The observed intensity enhancement in the Raman vibrational modes at lower calcination temperature was attributed to the enlargement of TONPs size. The absorption of molecules at the TONPs surface led to a quenching in the A 2 g and Eu Raman peaks. Raman peaks centered around 673 cm?1, 799 cm?1, 640 cm?1 , and 432 cm?1 corresponding to A1g, B2g, A1g, and Eg modes, respectively have manifested highest peaks intensity. Furthermore, the enhancement of the Eg mode due to the addition of SA dopant was ascribed to the Jahn–Teller distortion mechanism.  相似文献   

6.
Transport properties of p-Ga1?xInxAsySb1?y/p-InAs:Mn heterostructures with undoped layers of solid solutions similar in composition to GaSb (x?0.22) grown by liquid-phase epitaxy on substrates with a Mn concentration of (5–7)×1018 cm?3 are studied. It is ascertained that there is an electron channel at the interface (from the InAs side). The anomalous Hall effect and negative magnetoresistance are observed at relatively high temperatures (77–200) K. These phenomena can be attributed to the s-d-exchange interaction between Mn ions of the substrate and s electrons of the two-dimensional channel. The effective magnetic moment of Mn ions was evaluated as μ=200µB at T=77 K.  相似文献   

7.
A temperature dependence of the optical energy gap E g (T) for the CdSxSe1?x quantum dots synthesized in a borosilicate glass matrix was investigated in the range of 4.2–500 K. It was demonstrated that this dependence reproduced the dependence E g (T) for bulk crystals and is described by the Varshni formula for \(\bar r > a_B \) over the entire temperature range. Here, \(\bar r\) is the average dot radius, and aB is the Bohr radius for the exciton in a bulk crystal. With the transition to quantum dots with \(\bar r > a_B \), a decrease in the thermal coefficient of the band gap and a deviation from the Varshni dependence were observed in the temperature range of 4.2–100 K. The specific features observed are explainable by a decrease in the resulting macroscopic potential of the electron-phonon interaction and by modification of the vibration spectrum for dots as their volume decreases.  相似文献   

8.
The dependences of the electron mobility μeff in the inversion layers of fully depleted double–gate silicon-on-insulator (SOI) metal–oxide–semiconductor (MOS) transistors on the density N e of induced charge carriers and temperature T are investigated at different states of the SOI film (inversion–accumulation) from the side of one of the gates. It is shown that at a high density of induced charge carriers of N e > 6 × 1012 cm–2 the μeff(T) dependences allow the components of mobility μeff that are related to scattering at surface phonons and from the film/insulator surface roughness to be distinguished. The μeff(N e ) dependences can be approximated by the power functions μeff(N e) ∝ N e ?n . The exponents n in the dependences and the dominant mechanisms of scattering of electrons induced near the interface between the SOI film and buried oxide are determined for different N e ranges and film states from the surface side.  相似文献   

9.
Indium-antimonide quantum dots (7–9 × 109 cm2) are produced on an InAs(001) substrate by metal-organic vapor-phase epitaxy at a temperature of T = 440°C. Epitaxial deposition occurred simultaneously onto an InAs binary matrix and an InAsSbP quaternary alloy matrix layer lattice-matched to the InAs substrate in terms of the lattice parameter. Transformation of the quantum-dot shape and size is studied in relation to the chemical composition of the working matrix surface, onto which the quantum dots are deposited. The use of a multicomponent layer makes it possible to control the lattice parameter of the matrix and the strains produced in the system during the formation of self-assembled quantum dots.  相似文献   

10.
The results of studying the effect of irradiation with fast neutrons in an IBR-2 reactor on the characteristics of magnetic-field sensors based on n+-InSb whisker microcrystals are reported (the measurements were carried out in the course of the irradiation). The optimum concentration of free electrons n for providing the highest possible radiation resistance of the InSb sensors is estimated (n ≈ (6–7) × 1017 cm?3). The contributions of two competing processes to variation in the electrical properties of InSb under neutron irradiation (transmutation-related doping of InSb with a Sn shallow-level donor impurity and compensation of the initial n+-InSb conductivity as a result of generation of deep-level acceptor-type radiation defects) are determined separately.  相似文献   

11.
The effect of annealing in argon at temperatures of Tan = 700–900°C on the IV characteristics of metal–Ga2O3–GaAs structures is investigated. Samples are prepared by the thermal deposition of Ga2O3 powder onto GaAs wafers with a donor concentration of N d = 2 × 1016 cm–3. To measure theIV characteristics, V/Ni metal electrodes are deposited: the upper electrode (gate) is formed on the Ga2O3 film through masks with an area of S k = 1.04 × 10–2 cm2 and the lower electrode in the form of a continuous metallic film is deposited onto GaAs. After annealing in argon at Tan ≥ 700°C, the Ga2O3-n-GaAs structures acquire the properties of isotype n-heterojunctions. It is demonstrated that the conductivity of the structures at positive gate potentials is determined by the thermionic emission from GaAs to Ga2O3. Under negative biases, current growth with an increase in the voltage and temperature is caused by field-assisted thermal emission in gallium arsenide. In the range of high electric fields, electron phonon-assisted tunneling through the top of the potential barrier is dominant. High-temperature annealing does not change the electron density in the oxide film, but affects the energy density of surface states at the GaAs–Ga2O3 interface.  相似文献   

12.
The evolution of the Shubnikov-de Haas oscillations in InAs/AlSb heterostructures with twodimensional electron gas in InAs quantum wells 12–18 nm wide with considerable variation in the electron concentration (3–8) × 1011 cm?2 due to the effect of negative persistent photoconductivity is studied. The values of the effective Landé factor for electrons g* = ?(15–35) are determined. It is shown that the value of the g* factor increases as the quantum well width increases.  相似文献   

13.
p-Si single crystals grown by the Czochralski method were studied; the hole concentration in these crystals was p = 6 × 1013 cm?3. The samples were irradiated with 8-MeV electrons at 300 K and were then annealed isochronously in the temperature range T ann = 100–500°C. The studies were carried out using the Hall method in the temperature range of 77–300 K. It is shown that annealing of divacancies occurs via their transformation into the B s V 2 complexes. This complex introduces the energy level located at E v + 0.22 eV into the band gap and is annealed out in the temperature range of 360–440°C. It is assumed that defects with the level E v + 0.2 eV that anneal out in the temperature range T ann = 340–450°C are multicomponent complexes and contain the atoms of the doping and background impurities.  相似文献   

14.
Electron emission from multilayer arrays of vertically coupled InAs quantum dots into the n-GaAs matrix in Schottky-barrier structures (electron concentration n ≈ 2 × 1016 cm?3) is studied by admittance spectroscopy. It is established that, in the temperature region below ~70 K, electron emission in a rate range of 3 × 104–3 × 106 s?1 proceeds via thermally activated tunneling through intermediate virtual states. As the number of layers in the quantum dot array increases from three to ten, a decrease in the electron emission rate is observed.  相似文献   

15.
The effect of intersubband electron-electron (e-e) and electron-hole (e-h) scattering on intraband population inversion of electrons in a stepped InGaAs/AlGaAs quantum well is investigated. The characteristic times of the most probable e-e and e-h processes, which affect the electron densities on the excited levels, are calculated for the temperature range 80–300 K. Dependences of these times on the electron and hole density on the ground levels are studied. Temperature dependences of the intraband inversion of population for two nonequilibrium densities are calculated by solving a system of rate equations. It is shown that the intersubband e-e and e-h scattering only slightly affects the population inversion for electron densities below 1×1012 cm?2.  相似文献   

16.
The diffusion of magnesium impurity in the temperature range T = 600–800°C in dislocation-free single-crystal silicon wafers of p-type conductivity is studied. The surface layer of the wafer doped with magnesium by the ion implantation technique serves as the diffusion source. Implantation is carried out at an ion energy of 150 keV at doses of 5 × 1014 and 2 × 1015 cm–2. The diffusion coefficient of interstitial magnesium donor centers (D i ) is determined by measuring the depth of the p–n junction, which is formed in the sample due to annealing during the time t at a given T. As a result of the study, the dependence D i (T) is found for the first time. The data show that the diffusion process occurs mainly by the interstitial mechanism.  相似文献   

17.
The results of an experimental study of the capacitance–voltage (CV) characteristics and deep-level transient spectroscopy (DLTS) spectra of p+p0in0 homostructures based on undoped dislocationfree GaAs layers and InGaAs/GaAs and GaAsSb/GaAs heterostructures with homogeneous networks of misfit dislocations, all grown by liquid-phase epitaxy (LPE), are presented. Deep-level acceptor defects identified as HL2 and HL5 are found in the epitaxial p0 and n0 layers of the GaAs-based structure. The electron and hole dislocation-related deep levels, designated as, respectively, ED1 and HD3, are detected in InGaAs/GaAs and GaAsSb/GaAs heterostructures. The following hole trap parameters: thermal activation energies (E t ), capture cross sections (σ p ), and concentrations (N t ) are calculated from the Arrhenius dependences to be E t = 845 meV, σ p = 1.33 × 10–12 cm2, N t = 3.80 × 1014 cm–3 for InGaAs/GaAs and E t = 848 meV, σ p = 2.73 × 10–12 cm2, N t = 2.40 × 1014 cm–3 for GaAsSb/GaAs heterostructures. The concentration relaxation times of nonequilibrium carriers are estimated for the case in which dislocation-related deep acceptor traps are involved in this process. These are 2 × 10–10 s and 1.5 × 10–10 s for, respectively, the InGaAs/GaAs and GaAsSb/GaAs heterostructures and 1.6 × 10–6 s for the GaAs homostructures.  相似文献   

18.
The negative-U impurity stripes confining the edge channels of semiconductor quantum wells are shown to allow the effective cooling inside in the process of the spin-dependent transport. The aforesaid also promotes the creation of composite bosons and fermions by the capture of single magnetic flux quanta at the edge channels under the conditions of low sheet density of carriers, thus opening new opportunities for the registration of quantum kinetic phenomena in weak magnetic fields at high temperatures up to the room temperature. As a certain version noted above, we present the first findings of the high temperature de Haas–van Alphen (300 K) and quantum Hall (77 K) effects in the silicon sandwich structure that represents the ultranarrow, 2 nm, p-type quantum well (Si-QW) confined by the delta barriers heavily doped with boron on the n-type Si (100) surface. These data appear to result from the low density of single holes that are of small effective mass in the edge channels of p-type Si-QW because of the impurity confinement by the stripes consisting of the negative-U dipole boron centers which seems to give rise to the efficiency reduction of the electron–electron interaction.  相似文献   

19.
Admittance spectroscopy is used to study hole states in Si0.7–y Ge0.3Sn y /Si quantum wells in the tin content range y = 0.04–0.1. It is found that the hole binding energy increases with tin content. The hole size-quantization energies in structures containing a pseudomorphic Si0.7–y Ge0.3Sn y layer in the Si matrix are determined using the 6-band kp method. The valence-band offset at the Si0.7–y Ge0.3Sn y heterointerface is determined by combining the numerical calculation results and experimental data. It is found that the dependence of the experimental values of the valence-band offsets between pseudomorphic Si0.7–y Ge0.3Sn y layers and Si on the tin content is described by the expression ΔE V exp = (0.21 ± 0.01) + (3.35 ± 7.8 × 10–4)y eV.  相似文献   

20.
The properties of multiple-junction solar cells depend on the properties of the constituent photovoltaic and tunneling p-n junctions. In this study, the properties of the space-charge region for photovoltaic and tunneling p-n junctions were examined using the dark current-voltage characteristics for two semiconductors: GaSb (a narrow-gap semiconductor) and GaAs (a wide-gap semiconductor). The effects of irradiation with protons (the energy of 6.78 MeV and the maximum fluence of 3 × 1012 cm?2), electrons (the energy of 1 MeV and the maximum fluence of 3 × 1016 cm?2), and γ-ray photons (the energy of 1.17–1.33 MeV and the maximum dose of 17 Mrad) on the lifetime of charge carriers in the space-charge region of photovoltaic p-n junctions and on the peak current of connecting tunneling p-n junctions were studied. The coefficients of the damage for the inverse lifetime are determined for photovoltaic p-n junctions. The coefficients of equivalence between the used types of radiation are determined; these coefficients are found to be almost independent, on the order of magnitude, of the type and material of the p-n-junction (and nearly equal for photovoltaic GaAs p-n junctions and tunneling GaAs and GaSb p-n junctions).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号