首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
总结了汽油、喷气燃料、苯乙烯等装车(船)挥发性有机物(VOCs)排放标准和油品装车蒸气的收集和输送技术,可知中国标准与国外最严标准相当或略严格,推荐顶部浸没式鹤管装车VOCs蒸气采用风机输送到处理装置。介绍了中国石化大连石油化工研究院(原抚顺石油化工研究院,简称FRIPP)开发的汽油、喷气燃料、苯乙烯等装车(装船)VOCs气体"低温柴油吸收"、"低温柴油吸收-总烃均化-催化氧化(AHCO-1)"、"低温柴油吸收-焚烧"等处理技术,甲醇、乙酸等化学品装车VOCs气体"水吸收-总烃均化-催化氧化(AHCO-2)"处理技术,以及汽油"油气冷凝-蓄热氧化(RTO)"处理技术。技术数据表明:汽油油气经过"低温柴油吸收",油气回收率可达97%以上;装车(船)VOCs气体经过回收和催化氧化、焚烧等处理,净化气总烃质量浓度小于20mg/m~3,合计总烃去除率达99%以上。  相似文献   

2.
陈小燕 《石化技术》2023,(7):228-229
低温柴油吸收组合技术是现阶段石化行业VOCs治理领域普遍应用且效果较好的技术之一。本文通过对“低温柴油吸收+碱液脱硫+脱硫及总烃浓度均化+催化氧化”组合技术的优化研究,提出了调整废气管路界区手阀开度、降低催化氧化排口净化气氧含量、提高催化氧化单元入口温度及反应温升等优化措施,有效保障VOCs治理装置达标排放,实现装置安全平稳运行。  相似文献   

3.
介绍了炼油厂储罐挥发性有机物和恶臭废气排放概况及几种炼油厂储罐挥发性有机物和恶臭治理新技术,并给出了炼油厂储罐污染物浓度和罐顶废气排放量估算方法。通过加装罐顶气平衡连通管线、罐顶气进集气柜、控制罐内气体温度等技术可以减少罐顶气排放;酸性水、污油、粗汽油、粗柴油等储罐废气经过"低温柴油吸收-碱液脱硫-焚烧"技术处理,油气回收率可达70%~97%,硫化氢和有机硫化物去除率接近100%,焚烧烟气中总烃的质量浓度小于10 mg/m~3;油浆、对二甲苯等储罐废气经过"低温柴油吸收-脱硫均化-催化氧化"技术处理,油气回收率约76%,甲硫醇、硫化氢去除率接近100%,催化氧化净化气非甲烷总烃的质量浓度小于10 mg/m~3,苯、甲苯、二甲苯浓度低于检出限;油浆、沥青等储罐和沥青装车尾气经过"低温柴油吸收-脱硫均化-RTO"技术处理,油气回收率约46%,甲硫醇、硫化氢去除率接近100%,蓄热氧化净化气非甲烷总烃的质量浓度小于10 mg/m3,苯、甲苯、二甲苯浓度低于检出限。  相似文献   

4.
通过对装车排气达标治理技术对比分析,确定了低温柴油吸收-总烃均化-催化氧化工艺治理山东某石化企业汽油、喷气燃料装车排气。在吸收油流量15~20 m3/h、吸收温度8~15 ℃、吸收压力0.2 MPa、催化氧化反应温度 250~350 ℃及反应空速5 000~20 000 h-1的操作条件下,研究了低温柴油吸收、总烃均化、催化氧化过程对汽油及喷气燃料装车排气治理的效果,净化气中非甲烷总烃排放质量浓度小于20 mg/m3,苯、甲苯、二甲苯排放浓度低于检出限值,满足国家及地方标准排放要求。该装置的投资回收期约为5年,具有一定的经济效益和明显的环保效益。  相似文献   

5.
在分析油品出厂装车期间排气(简称装车排气)性质的基础上,通过对装车排气治理技术对比分析,确定了采用低温柴油吸收-总烃浓度均化-催化氧化工艺治理山东某企业0号柴油、92号汽油、轻石脑油、MTBE的装车排气。在低温柴油吸收的液/气体积比为60~120 L/m3、塔内操作温度为8~14 ℃、操作压力为0.2 MPa,催化氧化反应器入口温度为350~410 ℃、反应体积空速为5 000~20 000 h-1的操作条件下,净化气中非甲烷总烃排放质量浓度小于20 mg/m3,苯排放质量浓度小于0.001 mg/m3,甲苯和二甲苯排放质量浓度均小于0.003 mg/m3,净化气污染物排放浓度满足环保排放标准和A级企业排放指标要求。该废气治理装置可回收的油气量为2 836.1 t/a,具有一定的经济效益和明显的环保效益。  相似文献   

6.
炼油污水处理场挥发性有机物(VOCs)和恶臭废气可分为高浓度、低浓度两类:高浓度废气来自提升池、均质罐、隔油池、气浮池(浮选池)、污油罐(池)等,非甲烷总烃浓度为500~40 000 mg/m3,总气量为1 000~10 000 m3/h(标准状态);低浓度废气来自曝气池、氧化沟、污泥脱水间,非甲烷总烃浓度为10~300 mg/m3,总气量为20 000~50 000 m3/h(标准状态)。中国石化抚顺石油化工研究院开发了适用于炼油污水处理场高浓度与低浓度废气联合处理的SWAT-1、SWAT-2工艺技术,在SWAT-1工艺中,高浓度废气采用“脱硫及总烃浓度均化-催化燃烧(氧化)”工艺处理,曝气池等低浓度废气采用“洗涤-吸附”工艺处理,低浓度废气饱和吸附剂用催化氧化排放的热气再生并返回催化氧化处理系统;而在SWAT-2工艺中,高浓度废气采用“低温柴油吸收-脱硫及总烃浓度均化-催化氧化”工艺处理。应用SWAT-1、SWAT-2工艺处理污水处理场废气,净化气非甲烷总烃浓度可小于50 mg/m3,最低小于10 mg/m3,苯、甲苯、二甲苯浓度低于检出限,臭气浓度小于20(无量纲)。  相似文献   

7.
上海某石化企业储罐及污水池排气采用低温柴油吸收-碱液脱硫-总烃均化-蓄热氧化工艺处理。在吸收油量20 m~3/h、吸收温度5~12℃、吸收压力0. 18 MPa、蓄热氧化反应温度670~820℃及氧化停留时间2~5 s条件下,净化气中非甲烷总烃排放浓度小于10 mg/m~3,苯、甲苯、二甲苯浓度小于低检出限,且净化气中SO2和NOx浓度均小于25 mg/m~3,满足国家及地方标准排放要求,具有明显的环保及社会效益。废气处理装置的实际运行能耗折算值约为22. 2 kg(标准油)/h,年运行费用约为138. 5万元。  相似文献   

8.
石化是我国有机液体储存量最大的行业。有机液体储罐除大、小呼吸产气外,还有高温重油储存热裂解产气现象。现有国内外标准存在以下问题:(1)允许储罐排放的挥发性有机物(VOCs)浓度较高;(2)选用浮顶罐或固定顶罐+罐顶排气处理装置均符合标准,但允许排放的VOCs浓度差别很大。2019年,我国有机液体储存源VOCs排放量为392~904 kt,主要发生在石化行业。要提升我国环境空气质量、减少VOCs排放,储罐深度减排是关键。提出了“储罐VOCs深度减排”判据,将储存柴油的固定顶罐改为内浮顶罐可实现深度减排,现有固定顶罐、浮顶罐增加罐顶气治理可实现深度减排。介绍了中国石油化工股份有限公司大连(抚顺)石油化工研究院开发的以“低温柴油吸收-脱硫及总烃均化-蓄热氧化/催化氧化/热力焚烧炉”为核心的Tg系列储罐废气处理技术及应用实例,以及近年开发的内浮顶罐内置气袋VOCs减排技术。最后提出了储罐VOCs深度减排标准建议。  相似文献   

9.
介绍了柴油低温临界吸收-碱液脱硫-净化气焚烧工艺在某炼油厂氧化脱硫醇尾气治理工业装置上的成功应用。该炼油厂氧化脱硫醇尾气中油气体积分数为10%~40%,有机硫化物总质量浓度达2 000 mg/m3以上,尾气含烃浓度高、污染性强、恶臭气味大,排放量为150 m3/h。氧化脱硫醇尾气经过柴油低温吸收-碱液脱硫净化后,排气中油气质量浓度小于25 g/m3,有机硫化物去除率大于99%,硫化氢的排放浓度小于10 mg/m3,尾气净化装置的油气回收率高达95%。排放气再进入焚烧炉燃烧,燃烧净化后排放气体中油气浓度低于50 mg/m3,装置年回收油气量502.7 t以上,达到了油气回收和恶臭治理效果,具有明显的环保效益和经济效益。  相似文献   

10.
研究了炼油厂装车装船排放气组成和排放规律,对装载场合废气收集方式、引气控制、治理技术进行了分析和工业化试验研究。结果表明:装车装船逸散废气中非甲烷总烃浓度随装卸时间的延长而逐渐升高,废气收集采用引气式压力控制能实现流量自动控制;采用低温馏分油临界吸收-吸附技术对码头装船逸散废气进行回收治理,净化气中非甲烷总烃浓度低于6.1×10~3 mg/m~3,非甲烷烃总烃净化效率大于99.3%;采用低温馏分油临界吸收-催化氧化技术对装车栈台逸散废气进行回收净化治理,净化气中非甲烷总烃浓度不大于7.9mg/m~3,净化效率接近100%。  相似文献   

11.
对比分析了现有石化VOCs(挥发性有机物)废气治理方面的几种技术,介绍了低温重芳烃吸收-吸附-催化氧化工艺在某石化企业芳烃储罐及装船排气治理技术工业应用情况。废气治理装置的操作条件:低温重芳烃吸收液气比40~60 L/m3,吸收温度5~15℃,吸收塔和吸附罐操作压力0.18 MPa,吸附时间30 min,吸附罐解吸压力-0.095 MPa,废气进入催化氧化反应器的总烃的质量浓度为3 000~6 000 mg/m3,催化氧化反应温度350~410℃,反应器体积空速5 000~20 000 h-1。治理装置的净化气中非甲烷总烃的质量浓度均小于10 mg/m3,苯、甲苯、二甲苯浓度小于仪器最低检出限。净化气污染物排放浓度满足环保排放标准和企业相关排放指标要求。  相似文献   

12.
针对石油化工生产过程复杂挥发性有机物(VOCs)废气治理,开发了高效蓄热氧化反应器技术,利用开发的蓄热氧化反应器组合前端吸收及冷凝等废气预处理及浓度调节技术,在石油化工企业罐区、装车以及含油污水池逸散废气、汽油氧化脱硫醇尾气等挥发性有机物废气处理上进行了工业化应用,考察了双床蓄热氧化反应器和三床蓄热氧化反应器废气处理工业化应用效果。结果表明:三床蓄热氧化反应器处理效果明显好于双床蓄热氧化反应器。针对石油化工企业复杂VOCs废气,采用开发的三床蓄热氧化反应器处理后,净化气中非甲烷总烃质量浓度小于10 mg/m3,硫化氢、有机硫化物以及苯、甲苯、二甲苯等污染物浓度均低于检出限,优于国内外最严排放标准要求,实现了VOCs近零排放。  相似文献   

13.
VOCs对人体和区域环境会产生一定危害,石油化工企业的轻质油储罐区是VOCs的主要来源,必须对储罐区油气排放进行治理.文中根据储油罐区VOCs产生的原因进行分析,对比不同的处理方法,结合石油化工企业的特点提出了"低温柴油回收+碱液吸收+催化氧化"的处理方法,对处理装置进行评价,通过数据估算,该装置运行后能够产生良好的经...  相似文献   

14.
利用独创的高效耐腐蚀"Y"型三床式大型蓄热氧化反应器(RTO)及性能可靠的耐腐蚀专用蓄热氧化气流切换提升阀,并采用蓄热氧化-碱洗-吸附组合工艺,对某企业氯苯、硝基氯苯等生产装置和罐区的含氯挥发性有机物废气进行集中处理,考察了废气处理工业装置的运行效果。在小型装置上找出最佳操作条件,在入口总烃浓度为2 000~3 000 mg/m~3,氧化温度为850℃时,处理后净化气总烃质量浓度小于10 mg/m~3。15 dam~3/h蓄热氧化处理装置的生产运行和性能考核表明,氯苯化工装置和罐区VOCs废气经过蓄热氧化-碱洗-吸附组合工艺的处理,净化气中有机物去除率99%以上,非甲烷总烃质量浓度小于10 mg/m~3,氯苯、苯、HCl等污染物浓度低于检出限,二噁英排放达标。  相似文献   

15.
对某石化企业储运设施有机挥发物(VOCs)治理工艺进行了优化。采用“碱液脱硫+冷凝+低温柴油吸收+催化氧化”组合技术,该技术可以满足对不同性质的石油化工产品储运设施VOCs的有效治理,并实现VOCs达标排放,为石油化工产品储运设施的环保改造提供了技术保障。  相似文献   

16.
阐述了炼油厂含油废水储罐罐顶气VOCs的来源,对现有VOCs减排治理各种方法的选择原则进行介绍。目前国内许多含油废水罐一般都有单独去除H2S的方法,但同时去除VOCs和H2S混合废气,将排放气中的大量油气进行回收的方法较少。针对含油废水储罐VOCs和H2S浓度高的特点,对比分析后综合采用催化氧化(湿法)脱硫化物+低温柴油吸收+活性炭吸附技术。对技术工艺原理及流程进行了介绍,分析治理效果,基本解决了含油废水储罐罐顶油气回收难和恶臭的问题。  相似文献   

17.
丁苯橡胶生产过程排放气中含有烃类、苯乙烯、二硫化碳等挥发性有机物,由于丁苯橡胶废气VOCs浓度较低,直接采用常见的处理技术,很难满足非甲烷总烃去除率不小于97%等环保指标要求。阐述催化氧化装置现场试验情况,总结了耐硫催化氧化催化剂对丁苯橡胶废气处理效果。  相似文献   

18.
橡胶后处理废气治理常用的方法有热氧化法、吸附法、化学反应法等。由于后处理废气中含有少量胶沫,后处理废气预处理常用的方法有袋式除尘、水洗除尘、旋风除尘、自动卷帘除尘、湿式卧式旋风分离器等方法。后处理废气治理采用"洗涤-冷凝-催化氧化"技术。后处理废气催化氧化装置设计处理量约85000Nm~3/h。废气经催化反应器净化后废气中非甲烷总烃质量浓度≤20mg/Nm~3,满足国家和北京市废气排放标准要求。当非甲烷总烃质量浓度2589 mg/Nm~3时,需启动电加热器对废气进行加热;当非甲烷总烃质量浓度2589 mg/Nm~3时,不需启动电加热器,并可对废气催化氧化释放的多余能量回收利用。  相似文献   

19.
介绍了膜分离法油气回收技术的工作原理和工艺控制过程,分析了油气回收装置运行过程中存在吸收剂含水率高和夏季吸收剂温度高的问题,通过引进柴油低温临界吸收技术和膜前增加分水装置等措施,提出装置运行优化方案。在低能耗、低成本的基础上彻底解决现有油气回收装置运行瓶颈,提高油气回收装置平稳率和VOCs(挥发性有机化合物)废气回收总量,确保装置尾气浓度达标排放。  相似文献   

20.
利用低温柴油相似相溶的原理可有效处理废气中的非甲烷总烃、有机硫化物,低温柴油吸收装置中制冷机组的工作效率直接决定了整套装置的吸收效果。简要介绍了柴油吸收工艺流程和制冷机组组成,重点介绍了制冷机主程序的启停控制和辅助程序控制以及制冷机组的联锁保护和故障处理方法,通过制定与制冷机组工艺要求相匹配的控制方案,可以确保整套废气处理装置的长周期稳定运行,进而使废气达标排放。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号