首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 217 毫秒
1.
通过实验对含杂质CO2体系相态特性和CO2低温液态储存蒸发特性进行了研究.杂质含量越高,含杂质CO2体系的泡点压力和露点压力越高;杂质含量对泡点压力的影响程度较大,露点压力仅与杂质含量有关,而与杂质种类无关.初始充满率和环境温度对储罐内CO2压力和液相蒸发率都有显著影响;在初始充满率相同的情况下,外界环境温度越高,储罐内CO2压力和液相温度上升越快,储罐内CO2平均蒸发率越大;在外界环境温度相同的情况下,储罐内CO2初始充满率越高,其平均蒸发率越小.HYSYS软件模拟计算结果与实验结果的对比表明,可以利用HYSYS软件进行含杂质CO2体系相态特性及CO2低温液态储存蒸发特性的模拟分析.  相似文献   

2.
本文根据重质原油的现场资料,建立起一个估测地面标准状态下油气比的经验公式。在泡点压力或高子泡点压力下所得到的溶解油气比,可以视为所估测的地面标准状态下油气比与实测的分离器中油气比二者之和。该公式是由301个重质油样品经过二级分离后所得到的数据推导出来的。  相似文献   

3.
高油剂混合热量对重油催化裂化反应的影响   总被引:1,自引:0,他引:1  
 为了研究催化裂化过程中油剂混合初期混合热量对重油分子裂化反应的影响规律,采用连续反应-再生提升管催化裂化中型实验装置通过调节剂油比和再生剂温度,考察了油剂混合热量对重油催化裂化反应过程产品分布的影响,并从烃类结构基团转化的角度深入分析了油剂混合热量与重油催化转化效率之间的内在关系。研究结果表明,通过提高剂油比,增加油剂混合热量,可以提高催化剂与重油分子的接触几率,有利于强化烃分子与催化剂之间的热量和物质传递,从而更加有效的实现对重油烃类大分子的裂化反应,弱化多环芳烃与其它烃类分子在催化剂表面的竞争吸附效应,改善重油发生催化裂化本征反应的环境,在相同转化率下获得更高的轻质油收率和液收率。  相似文献   

4.
化学工程     
TQ013.1200605429NH3-H2O-LiBr三元溶液体系气液相平衡特性实验研究〔刊〕/陈燕,吴裕远…(西安交通大学动力工程多相流国家重点实验室)∥上海交通大学学报.-2005,39(8).-1218~1221用静态平衡釜对NH3-H2O-LiBr三元混合溶液的平衡压力及平衡温度进行了实验研究,以考察LiBr添加剂对氨水吸收式制冷系统的影响。该三元混合溶液的压力-温度特性气液平衡实验在10个温度下进行。结果表明,与相同浓度下的NH3-H2O溶液相比,三元溶液的气液平衡压力降低了近30%~50%。由理论分析可推断其气相中的水含量亦有大幅度的降低。图3参10(段军摘)TQ013.1…  相似文献   

5.
采用混合溶剂热法,以硝酸铝和对苯二甲酸为原料制备了金属有机骨架材料MIL-53;使用XRD、SEM手段对合成样品结构进行表征;通过吸附等温线测试、液相静态吸附平衡实验、脉冲实验评价最优制备方法下材料的吸附性能。结果表明:制备的MIL-53材料呈现均一的尺寸和分布,晶粒尺寸为50~80 nm;该材料在相同温度和压力下对不同组分的吸附量不同,在铝盐与对苯二甲酸摩尔比为1:1的条件下,以2-甲基甲酰胺为溶剂,制备的MIL-53材料的甲苯吸附量最大;合成的MIL-53材料优先吸附邻二甲苯。  相似文献   

6.
高含蜡原油生产中析蜡和熔蜡规律实验研究   总被引:1,自引:0,他引:1  
运用激光测试高压原油析蜡点的最新方法,对井筒中原油的析蜡规律和地层中原油的熔蜡规律进行了研究。研究结果表明:含气原油比脱气原油的析蜡点温度低;井筒中压力高于泡点压力时,原油析蜡点随压力下降而下降;压力低于泡点压力时,原油析蜡点随压力下降而升高;地层条件下熔蜡温度比析蜡温度高。  相似文献   

7.
化学工程     
TQ013.1200507433乙醇水复合溶剂体系汽液平衡〔刊〕/鲍静,张雅明…(南京工业大学化学化工学院)∥南京工业大学学报.-2004,26(5).-42~46,86用改进的Othmer汽液平衡釜测定了101.3kPa下乙醇水复合溶剂6个体系在不同溶剂比的汽液平衡数据,6种复合溶剂为:乙二醇+氯化锂,乙二醇+氯化钙,乙二醇+醋酸钾,乙二醇+氯化锂+氢氧化钾,乙二醇+氯化钙+氢氧化钾,乙二醇+醋酸钾+氢氧化钾。并用Wilson模型和NRTL模型对实验数据进行了关联,结果良好,大部分体系的汽相组成平均偏差小于0.02,泡点温度平均偏差小于1K。表10参13(段军摘)TQ013.1200507434乙酸…  相似文献   

8.
丁二酸二甲酯加氢制备γ-丁内酯   总被引:3,自引:0,他引:3  
实验以丁二酸二甲酯为原料、甲醇为溶剂,在复合铜基催化剂Cu-ZnO-ZrO_2/Al_2O_3作用下,催化加氢制备γ-丁内酯。考察了反应温度、压力、氢酯摩尔比、液时空速和溶剂质量比等因素对加氢反应的影响。结果表明:在反应温度为200℃、压力为3.0 MPa、n(H_2):n(C_6H_(10)O_4)=150、丁二酸二甲酯液时空速为0.5 h、溶剂质量比为4:1的条件下,丁二酸二甲酯的转化率达到100%,γ-丁内酯的选择性达90%。  相似文献   

9.
《石油化工》2015,44(10):1224
以乙二胺、乙醇胺和CO2为原料,Ru/Al2O3为催化剂,水为溶剂一步法合成1-(2-氨乙基)-2-咪唑烷酮(AEI)。通过单因素实验和正交实验考察了反应温度、反应时间、CO2压力、溶剂水用量和催化剂负载量等反应条件对乙二胺转化率和AEI收率的影响,分析了CO2在AEI合成过程中的作用机理。实验结果表明,在反应温度220℃、CO2压力8 MPa、反应时间10 h、负载1%(w)Ru/Al2O3催化剂和溶剂水7 m L条件下,AEI收率可达70.25%;增加CO2压力有利于提高乙二胺转化率和中间产物2-咪唑烷酮的生成,但CO2压力的增加增强了CO2与2-咪唑烷酮上氨基的作用,阻碍了氨基和乙醇胺上羟基脱水生成AEI,降低了AEI收率。  相似文献   

10.
埋藏成岩环境碳酸盐岩溶蚀作用模拟实验研究   总被引:8,自引:2,他引:6       下载免费PDF全文
在压力不变、不同温度条件下,分别以CO2、乙酸和H2S溶液为介质,对各类碳酸盐岩的溶蚀表明,总体上灰岩最易溶,白云岩最难溶,过渡岩类处于两者之间,反映了方解石比白云石易溶的特征.在温度不变,不同压力条件下,乙酸溶液对各类碳酸盐岩的溶蚀表明,在0.2~30 MPa压力条件下,灰岩比白云岩易溶,但在50MPa压力条件下各类样品溶蚀强度明显增加,增强幅度以白云岩类最大,灰岩最小,云质灰岩介于两者之间.结合前人实验结果推测,压力继续增加时,白云岩溶蚀强度可能超过灰岩.而在相同温压条件下,以CO2溶液为介质,不同粒径的微晶灰岩样品的溶蚀表明,小粒径样品溶蚀率是大粒径样品的1.49倍,说明溶蚀作用强弱除了取决于矿物成分外,流体与矿物接触的比表面积大小是至关重要的因素.  相似文献   

11.
A lot of hindrances are seen in petroleum operation, production, and transportation as a results of factors that related to asphaltene precipitation. It has great importance to investigate the reversibility of asphaltene precipitation under changes of effective factors on thermodynamic conditions such as pressure, temperature, and composition. In the present work the reversibility of asphaltene precipitation under changes of pressure and temperature was investigated for two kind of Iranian heavy oil. The stability test shows these samples are located at unstable region in aspect of asphaltene precipitation. The experimental procedure includes two parts, (a) decreasing pressure from initial reservoir pressure to near saturation pressure and surveying asphaltene content hysteresis with redissolution process at reservoir temperature, and (b) investigation of precipitated asphaltene in both precipitation and redissolution processes at different temperature and reservoir pressure. At each step IP143 standard test was used to measure precipitated asphaltene. It was concluded that above bubble point pressure, asphaltene precipitation is nearly reversible with respect to pressure for both samples and it was partially reversible with respect to the temperature for sample A, and accordingly pressurizing is acceptable method for solving the problem in both heavy asphaltenic crude oil samples and increasing temperature is acceptable method for solving asphaltene problem in crude oil sample A. Also density measurement of flashed oil confirmed that there is a little hysteresis in asphaltene content during redissolution and precipitation processes.  相似文献   

12.
Thermal and miscible methods are commonly used for in situ recovery of heavy oil and bitumen. Both techniques have their own limitations and benefits. However, these methods can be combined by co-injecting solvent with steam or injecting solvent into a pre-heated reservoir. The current work was undertaken to study the performance of solvents at higher temperatures for heavy oil/bitumen recovery. Glass bead packs and Berea sandstone cores were used in the experiments to represent different types of pore structures, porosity and permeability. After saturating with heavy oil, the samples were exposed to the vapor of paraffinic solvents (propane and butane) at a temperature above the boiling point of the solvent, and a constant pressure of 1500 kPa. A mechanical convection oven was used to maintain constant temperature across the setup. The setup was designed in such a way that a reasonably long sample (up to 30 cm) can be tested to analyze the gravity effect. The oil recovered from each of these experiments was collected using a specifically designed collection system and analyzed for composition, viscosity and asphaltene content.The final amount of oil recovered in each case (recovery factor but not extraction rate) was also analyzed and the quantity and nature of asphaltene precipitated with each of the tested solvents under the prevailing temperature and pressure of the experiment was reported. Optimal conditions for each solvent type were identified for the highest ultimate recovery. It was observed that recovery decreased with increasing temperature and pressure of the system for both solvents, and that the best results were found when experimental temperature is only slightly higher than the saturation temperature of the solvent used. It was also noticed that butane diluted the oil more than propane which resulted in lower asphaltene content and viscosity of oil produced with butane as a solvent.  相似文献   

13.
针对稠油热采后期采收率不断下降的难题,研究利用溶剂蒸气萃取技术改善开发效果。设计了矩形可视化填砂物理模型,采用新疆风城试验区块特稠油为实验油样,利用实际油藏取心对模型进行充填,进行了一系列溶剂蒸气萃取实验,分别研究溶剂类型、操作压力和填砂后渗透率对沥青沉淀的影响。研究发现,相同条件下丙烷作萃取溶剂时比丁烷萃取效果更好;当操作压力为丙烷的饱和蒸气压时,沥青沉淀效果最好,此时溶剂的回采比例最高,溶剂的循环利用也可降低使用成本;操作压力低于饱和蒸气压力时,会降低稠油中溶入的溶剂气量,降低脱沥青效果;在同一丙烷的饱和蒸气压力下,当渗透率达到几百个达西时,沥青沉淀会使稠油黏度下降,流动性增强,从而提高采油速度;当渗透率比较低时,沥青沉淀会堵塞部分孔隙,对稠油的流动造成一定影响,导致采油速度降低。  相似文献   

14.
为研究CO2辅助蒸汽吞吐技术开发超稠油中CO2的作用,以郑411区块超稠油为研究对象,通过注气膨胀实验系统地研究了不同CO2注入量、温度及压力下,超稠油物性的变化规律,并使用多元回归方法分别建立了溶解气油比、饱和压力、原油黏度、原油密度及原油体积系数与CO2注入量、温度及压力的关系模型,拟合优度均在0.90以上。郑411块超稠油的溶解气油比随CO2注入量的增加而线性增加;饱和压力随CO2注入量的增加而线性增加,随温度增加而呈乘幂趋势增加;原油黏度随CO2注入量增加而呈指数趋势降低,其对数值随温度升高呈乘幂趋势降低;原油密度随CO2注入量增加呈指数趋势降低,随温度升高呈对数趋势降低,随压力增加而线性增加;原油体积系数随CO2注入量和温度的增加均呈指数趋势增加,随压力增加而线性减小。超稠油对温度有极强的敏感性,加热升温能显著降低超稠油黏度,提高其流动性;同时,CO2溶解降黏、膨胀原油的特性,能改善原油物性,有助于超稠油的动用。  相似文献   

15.
The objective of this work was to investigate the effect of pressure on the concentration of the dissolved asphaltenes in a heavy oil. The asphaltenes content was determined in oil samples, produced at reservoir temperature and different pressures ranging from the initial reservoir pressure to the atmospheric one, using the standard IP143/90 method. Additionally, the content of nine trace metals in the asphaltenes, produced at each pressure step was studied by Total Reflection X-Ray Fluorescence (TXRF). It was found that the amount of the dissolved asphaltenes in oil decreases as pressure falls from the initial reservoir pressure down to bubble point pressure and subsequently increases as the pressure is reduced further. A positive correlation was observed between the concentration of several metals (Ni, V, Cr, Mn) and the dissolved asphaltenes content.  相似文献   

16.
The objective of this work was to investigate the effect of pressure on the concentration of the dissolved asphaltenes in a heavy oil. The asphaltenes content was determined in oil samples, produced at reservoir temperature and different pressures ranging from the initial reservoir pressure to the atmospheric one, using the standard IP143/90 method. Additionally, the content of nine trace metals in the asphaltenes, produced at each pressure step was studied by Total Reflection X-Ray Fluorescence (TXRF). It was found that the amount of the dissolved asphaltenes in oil decreases as pressure falls from the initial reservoir pressure down to bubble point pressure and subsequently increases as the pressure is reduced further. A positive correlation was observed between the concentration of several metals (Ni, V, Cr, Mn) and the dissolved asphaltenes content.  相似文献   

17.
卢迎波 《岩性油气藏》2022,34(6):152-159
为探索泡沫油在超稠油油藏中的形成机理、渗流特征及驱油效果,采用准噶尔盆地西北缘乌夏断裂带侏罗系齐古组原油及油藏参数,进行注气形成泡沫油介质筛选及原油泡点压力测定实验,并开展注气微观可视化和填砂管驱油实验,深入解析注气形成泡沫油过程中的渗流特征,评价了注气泡沫油驱油效果。研究结果表明:①准噶尔盆地西北缘乌夏断裂带侏罗系齐古组原油泡点压力为9.7 MPa,拟泡点压力随着注气量的增加而增加,随温度的上升而上升,50℃的拟泡点压力随着CO2注入量的增加而增大,压力上升速度较缓,储层具有较好的注气特性。②研究区的泡沫油渗流可分为5个阶段:无气泡阶段、气泡析出阶段、气泡扩张阶段、气泡聚并阶段和气泡消亡阶段。③研究区蒸汽+CO2方式驱油开采过程较纯蒸汽填砂管驱的采收率可提升13.3%,开采过程中随着压力的释放,气泡数目逐渐增多,产油量逐步缓慢上升;当压力降至泡点压力后,气泡数目趋于平稳,形成较稳定的泡沫油,产油量大幅提升,为主力产油期;当压力释放至拟泡点压力后,气泡数目迅速下降,泡沫油逐渐消亡,产油量缓慢下降。  相似文献   

18.
An extensive set of phase behavior measurements were carried out on mixtures of carbon dioxide with a Canadian heavy oil and with its constitutive fractions. The heavy oil was divided into three fractions by asphaltene precipitation and distillation. The phase behavior data were then measured at 21°C and 140°C, and at several pressures up to 12.41 MPa, and included the mixtures' solubilities, swelling factors, densities, gas/oil ratios and viscosities. The oil samples obtained during the measurements were analyzed using gas chromatographic simulated distillation.The solubility of CO2 increased with pressure and decreased with increasing temperature. Saturated mixture densities increased with pressure at 21°C; however, they decreased with pressure at 140°C. The extent of density change with pressure were small when compared to the changes due to temperature. A significant amount of oil swelling was also observed. An important effect of CO2 was the large reduction in the oil viscosities. The extent of this reduction was larger at 21°C than at 140°C and was more pronounced for the more viscous oils. Simulated distillation analysis of the oil samples show the extraction of light ends into the CO2 phase, but no deposition of heavy ends could be detected.The phase behavior data of the heavy oil and its fractions with CO2 were correlated by the Peng-Robinson (PR) equation of state (EOS). The phase behavior data were also interpreted using binary and ternary mixtures of CO2 with n- alkanes having the same molecular weights as the oil fractions. Mixture densities were correlated using the volume translated PR EOS and viscosities were correlated by equations proposed by Lederer.  相似文献   

19.
地层油高压物性参数主要受温度、压力等因素的影响,而地层油自身的组成也对其有着重要影响。对S48井、G942井和F154井的地层油进行了一系列的高压物性实验研究。结果表明:相同气油比,原油含蜡量越高,地层油泡点压力越高,体积系数越大;当压力高于泡点压力时,原油含蜡量越低,溶解气量越多,地层油体积系数和密度受压力的影响越显著;含蜡量越高,体积系数和密度受压力的影响越小。含蜡量高的地层油溶解天然气后的降黏效果明显好于含蜡量低的地层油。  相似文献   

20.
Abstract

Natural depletion of petroleum reservoirs as well as gas injection for enhance oil recovery, are unavoidable processes in the oil industry. Foremost, prediction of the problems due to these two processes is very necessary and important. So many field and experimental experiences have shown that heavy organic depositions, especially asphaltene deposition, are principal results during these processes. Results of laboratory simulation of asphaltene deposition during the natural depletion of petroleum reservoirs and also during gas injection and enhanced oil recovery (EOR) processes are reported here. This is achieved through the design of a new experimental setup for the investigation of pressure and composition effects on asphaltene deposition in petroleum fluids at high pressure and high temperature conditions. In this work, asphaltene deposition during decreasing pressure, from pressures greater than reservoir pressure to pressures below the bubble point pressure (natural depletion) and also asphaltene deposition during natural gas injection in reservoir conditions, are studied for three samples—one recombined sample and two bottomhole samples. All of the obtained results from this work conform to theoretical and other experimental works.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号