首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Atmospheric CO2 concentrations have increased dramatically over the last century and continuing increases are expected to have significant, though currently unpredictable, effects on ecosystems. One important process that may be affected by elevated CO2 is leaf litter decomposition. We investigated the interactions among atmospheric CO2, herbivory, and litter quality within a scrub oak community at the Kennedy Space Center, Florida. Leaf litter chemistry in 16 plots of open-top chambers was followed for 3 years; eight were exposed to ambient levels of CO2, and eight were exposed to elevated levels of CO2 (ambient + 350 ppmV). We focused on three dominant oak species, Quercus geminata, Quercus myrtifolia, and Quercus chapmanii. Condensed tannin concentrations in oak leaf litter were higher under elevated CO2. Litter chemistry differed among all plant species except for condensed tannins. Phenolic concentrations were lower, whereas lignin concentrations and lignin/nitrogen ratios were higher in herbivore-damaged litter independent of CO2 concentration. However, changes in litter chemistry from year to year were far larger than effects of CO2 or insect damage, suggesting that these may have only minor effects on litter decomposition.  相似文献   

2.
Elevated concentrations of atmospheric CO2 are likely to interact with other factors affecting plant physiology to alter plant chemical profiles and plant–herbivore interactions. We evaluated the independent and interactive effects of enriched CO2 and artificial defoliation on foliar chemistry of quaking aspen (Populus tremuloides) and sugar maple (Acer saccharum), and the consequences of such changes for short-term performance of the gypsy moth (Lymantria dispar). We grew aspen and maple seedlings in ambient (~360 ppm) and enriched (650 ppm) CO2 environments at the University of Wisconsin Biotron. Seven weeks after budbreak, trees in half of the rooms were subjected to 50% defoliation. Afterwards, foliage was collected for chemical analyses, and feeding trials were conducted with fourth-stadium gypsy moths. Enriched CO2 altered foliar levels of water, nitrogen, carbohydrates, and phenolics, and responses generally differed between the two tree species. Defoliation induced chemical changes only in aspen. We found no significant interactions between CO2 and defoliation for levels of carbon-based defenses (phenolic glycosides and tannins). CO2 treatment altered the performance of larvae fed aspen, but not maple, whereas defoliation had little effect on performance of insects. In general, results from this experimental system do not support the hypothesis that induction of carbon-based chemical defenses, and attendant effects on insects, will be stronger in a CO2-enriched world.  相似文献   

3.
We examined whether tannin composition plays an important role in explaining the oxidative activities of tree leaves of Acer saccharum (sugar maple) and Quercus rubra (red oak). Sugar maple leaves contained substantial amounts of ellagitannins, condensed tannins, and galloyl glucoses, whereas red oak leaves contained almost exclusively condensed tannins. Oxidative activities of the crude phenolics from both species, and the phenolic fractions from sugar maple, were measured with electron paramagnetic resonance (EPR) spectrometry and UV-visible spectrophotometry. The two assays produced similar results: (1) sugar maple phenolics produced larger semiquinone radical concentrations,and higher semiquinone decay rates and browning rates than did red oak phenolics;(2) ellagitannin levels were positively associated with the three measures of oxidative activity; and (3) condensed tannin and galloyl glucose levels were negatively associated with these measures. The negative relationship between condensed tannin levels and oxidative activity resulted from the antioxidant effects of condensed tannins on hydrolyzable tannins; several purified condensed tannins significantly decreased the concentrations of semiquinone radicals and browning rates of pedunculagin (an ellagitannin) and pentagalloyl glucose. As expected, whole-leaf extracts from sugar maple produced elevated levels of semiquinone radicals, but none were observed in red oak extracts when the two species were compared with an EPR time-course assay. We conclude that the oxidative activities of tree leaves may be affected by tannin composition, and that the prooxidant activity of ellagitannins may be decreased by co-occurring condensed tannins.  相似文献   

4.
Total and individual glucosinolate contents of broccoli cv Marathon were assessed at ambient CO2 (430–480 ppm) and elevated atmospheric CO2 (685–820 ppm) to determine the ecological relationship between changing atmospheric CO2 concentrations and phytochemicals. Elevated atmospheric CO2 concentration had a differing effect on individual glucosinolates and glucosinolate groups. Total glucosinolate content increased at elevated atmospheric CO2 concentration as a result of a strong increase in both methylsulfinylalkyl glucosinolates glucoraphanin and glucoiberin. In contrast, indole glucosinolates simultaneously decreased, predominantly because of a reduction of glucobrassicin and 4-methoxy-glucobrassicin contents. We conclude that changes in N content and N/S ratios as well as alterations in photochemical processes at elevated atmospheric CO2 concentration can influence total and individual glucosinolates contents of Brassicaceae, as demonstrated in the greenhouse, for broccoli.  相似文献   

5.
Phenolic compounds are generally believed to be key components of the oxidative defenses of plants against pathogens and herbivores. However, phenolic oxidation in the gut fluids of insect herbivores has rarely been demonstrated, and some phenolics could act as antioxidants rather than prooxidants. We compared the overall activities of the phenolic compounds in red oak (Quercus rubra) and sugar maple (Acer saccharum) leaves in the midgut fluids of two caterpillar species, Malacosoma disstria (phenolic-sensitive) and Orgyia leucostigma (phenolic-tolerant). Three hypotheses were examined: (1) ingested sugar maple leaves produce higher levels of semiquinone radicals (from phenolic oxidation) in caterpillar midgut fluids than do red oak leaves; (2) O. leucostigma maintains lower levels of phenolic oxidation in its midgut fluids than does M. disstria; and (3) phenolic compounds in tree leaves have overall prooxidant activities in the midgut fluids of caterpillars. Sugar maple leaves had significantly lower ascorbate:phenolic ratios than did red oak leaves, suggesting that phenolics in maple would oxidize more readily than those in oak. As expected, semiquinone radicals were at higher steady-state levels in the midgut fluids of both caterpillar species when they fed on sugar maple than on red oak, consistent with the first hypothesis. Higher semiquinone radical levels were also found in M. disstria than in O. leucostigma, consistent with the second hypothesis. Finally, semiquinone radical formation was positively associated with two markers of oxidation (protein carbonyls and total peroxides). These results suggest that the complex mixtures of phenolics in red oak and sugar maple leaves have overall prooxidant activities in the midgut fluids of M. disstria and O. leucostigma caterpillars. We conclude that the oxidative defenses of trees vary substantially between species, with those in sugar maple leaves being especially active, even in phenolic-tolerant herbivore species.  相似文献   

6.
The rising level of atmospheric CO2 has stimulated several recent studies attempting to predict the effects of increased CO2 on ecological communities. However, most of these studies have been conducted in the benign conditions of the laboratory and in the absence of herbivores. In the current study, we utilized large octagonal chambers, which enclosed portions of an intact scrub-oak community to investigate the interactive effects of CO2 and insect herbivory on myrtle oak, Quercus myrtifolia. Specifically, we assessed the effects of ambient and elevated CO2 (2x current concentrations) on percent foliar nitrogen, C:N ratio, total relative foliar tannin content, and the presence of leaf damage caused by leaf mining and leaf chewing insects that feed on myrtle oak. Total foliar N declined and C:N ratios increased significantly in oaks in elevated CO2 chambers. The percentages of leaves damaged by either leafminers or leaf chewers tended to be lower in elevated compared to ambient chambers, but they co-occurred on leaves less than expected, regardless of CO2 treatment. Leaves that had been either mined or chewed exhibited a similar wounding or defensive response; they had an average of 25 and 21% higher protein binding ability, which is correlated with tannin concentration, compared to nondamaged control leaves, respectively. While the protein-binding ability (expressed as total percent tannin) of leaves from elevated CO2 was slightly higher than from leaves grown in ambient chambers, this difference was not significant.  相似文献   

7.
Chemical analyses performed on the invasive weed Phytolacca americana (pokeweed) growing in industrially contaminated (Ulsan) and noncontaminated (Suwon) sites in South Korea indicated that the levels of phenolic compounds and various elements that include some heavy metals (Al, As, B, Cd, Co, Cu, Fe, Mn, Ni, Pb, and Zn) were statistically higher in Ulsan soils compared to Suwon soils with Al being the highest (>1,116 mg/l compared to 432 mg/l). Analysis of metals and nutrients (K, Na, Ca, Mg, Cl, NH4, N, P, S) in plant tissues indicated that accumulation occurred dominantly in plant leaves with Al levels being 33.8 times higher in Ulsan plants (PaU) compared to Suwon plants (PaS). The ability of PaU and PaS to tolerate stress was evaluated under controlled conditions by varying atmospheric CO2 and temperature and soil pH. When grown in pH 6.4 soils, the highest growth rate of PaU and PaS plants occurred at elevated (30°C) and non-elevated (25°C) temperatures, respectively. Both PaU and PaS plants showed the highest and lowest growth rates when exposed to atmospheric CO2 levels of 360 and 650 ppm, respectively. The impact of soil pH (2–6.4) on seed germination rates, plant growth, chlorophyll content, and the accumulation of phenolics were measured to assess the effects of industrial pollution and global-warming-related stresses on plants. The highest seed germination rate and chlorophyll content occurred at pH 2.0 for both PaU and PaS plants. Increased pH from 2–5 correlated to increased phenolic compounds and decreased chlorophyll content. However, at pH 6.4, a marked decrease in phenolic compounds, was observed and chlorophyll content increased. These results suggest that although plants from Ulsan and Suwon sites are the same species, they differ in the ability to deal with various stresses.  相似文献   

8.
Increasing global atmospheric CO2 has been shown to affect important plant traits, including constitutive levels of defensive compounds. However, little is known about the effects of elevated CO2 on the inducibility of chemical defenses or on plant mechanical defenses. We grew Brassica rapa (oilseed rape) under ambient and elevated CO2 to determine the effects of elevated CO2 on constitutive levels and inducibility of carbon-based phenolic compounds, and on constitutive trichome densities. Trichome density increased by 57% under elevated CO2. Constitutive levels of simple, complex, and total phenolics also increased under elevated CO2, but inducibility of each decreased. Induction of simple phenolics occurred only under ambient CO2. Although induction of complex and total phenolics occurred under both ambient and elevated CO2, the damage-induced increases were 64% and 75% smaller, respectively, under elevated CO2. Constitutive phenolic levels were positively correlated with leaf C:N ratio, and inducibility was positively correlated with leaf N and negatively correlated with leaf C:N ratio, as would be expected if inducibility were constrained by nitrogen availability under elevated CO2. We conclude that B. rapa is likely to exhibit higher constitutive levels of both chemical and mechanical defenses in the future, but is also likely to be less able to respond to herbivore damage by inducing phenolic defenses. To our knowledge, this is only the second study to report a negative effect of elevated CO2 on the inducibility of any plant defense.  相似文献   

9.
The correlation between total phenolics and tannin content within a species is often considered to be suitably strong to allow researchers to assume, with some degree of confidence, that levels of one will approximately parallel the other. However, the manipulation of resource availability could lead to disproportionate changes in total phenolics and tannins and/or in the specific monomers of which these fractions are composed, thus altering the correlation between these components. In order to test this hypothesis, we examined the correlation between foliar levels of total phenolics (as measured by the ferric chloride assay) and tannins (as measured by an astringency assay) in Douglas-fir (Pseudotsuga menziesii Mirb. Franco) before and after the manipulation of nitrogen and water availability. Prior to manipulation of resources, the correlation between total phenolics and tannins was strong and highly significant (r2=0.869;P < 0.001). This correlation was considerably weaker and not statistically significant following resource manipulation (r2 = 0.392; 0.20 <P < 0.50). These results demonstrate that manipulation of resource availability can alter the correlation between total phenolics and tannins in intraspecific comparisons. The causes underlying the observed degradation in the correlation between these measures (whether qualitative, quantitative, or both) are unknown and require further investigation.  相似文献   

10.
Prominent among the many factors now affecting the sustainability of forest ecosystems are anthropogenically-generated carbon dioxide (CO2) and ozone (O3). CO2 is the substrate for photosynthesis and thus can accelerate tree growth, whereas O3 is a highly reactive oxygen species and interferes with basic physiological functions. This review summarizes the impacts of CO2 and O3 on tree chemical composition and highlights the consequences thereof for trophic interactions and ecosystem dynamics. CO2 and O3 influence phytochemical composition by altering substrate availability and biochemical/physiological processes such as photosynthesis and defense signaling pathways. Growth of trees under enriched CO2 generally leads to an increase in the C/N ratio, due to a decline in foliar nitrogen and concomitant increases in carbohydrates and phenolics. Terpenoid levels generally are not affected by atmospheric CO2 concentration. O3 triggers up-regulation of antioxidant defense pathways, leading to the production of simple phenolics and flavonoids (more so in angiosperms than gymnosperms). Tannins levels generally are unaffected, while terpenoids exhibit variable responses. In combination, CO2 and O3 exert both additive and interactive effects on tree chemical composition. CO2-and O3-mediated changes in plant chemistry influence host selection, individual performance (development, growth, reproduction), and population densities of herbivores (primarily phytophagous insects) and soil invertebrates. These changes can effect shifts in the amount and temporal pattern of forest canopy damage and organic substrate deposition. Decomposition rates of leaf litter produced under elevated CO2 and O3 may or may not be altered, and can respond to both the independent and interactive effects of the pollutants. Overall, however, CO2 and O3 effects on decomposition will be influenced more by their impacts on the quantity, rather than quality, of litter produced. A prominent theme to emerge from this and related reviews is that the effects of elevated CO2 and O3 on plant chemistry and ecological interactions are highly context- and species-specific, thus frustrating attempts to identify general, global patterns. Many of the interactions that govern above- and below-ground community and ecosystem processes are chemically mediated, ultimately influencing terrestrial carbon sequestration and feeding back to influence atmospheric composition. Thus, the discipline of chemical ecology is fundamentally important for elucidating the impacts of humans on the health and sustainability of forest ecosystems. Future research should seek to increase the diversity of natural products, species, and biomes studied; incorporate long-term, multi-factor experiments; and employ a comprehensive “genes to ecosystems” perspective that couples genetic/genomic tools with the approaches of evolutionary and ecosystem ecology.  相似文献   

11.
Catechin, quercitrin, robinin, quercetin 3-methyl ether, scopoletin, cholorogenic acid, several leucoanthocyanins, and condensed and hydrolyzable tannins were identified in bark and leaves ofQuercus velutina Lamarck. The concentrations of most phenolics in leaves increased as the growing season progressed, whereas those of most phenolics in bark remained essentially unchanged. Qualitative differences in bark and leaf phenolics among different trees were negligible.  相似文献   

12.
13.
Acorn fruit oils from two species of oak, Quercus rotundifolia L. (holm‐oak) and Quercus suber L. (cork‐oak), were extracted by n‐hexane. The acorn fruit of Quercus rotundifolia L. was also extracted by supercritical CO2 at 18 MPa and 313 K, a superficial velocity of 2.5 × 10?4 ms?1, and a particle size diameter of 2.7 × 10?4 m. The oils were characterised in terms of fatty acids, triglycerides, sterols, tocopherols, and phospholipids. The main fatty acid in both fruit species was oleic acid (about 65%), followed by linoleic acid (about 16.5–17%) and palmitic acid (about 12.1–13.4%). The main triglyceride found in acorn oils was the OOO (oleic, oleic, oleic) triglyceride (33–38%), followed by the POO (palmitic, oleic, oleic) triglyceride (12.6–18.2%). In terms of sterols, the main component in acorn oils of both species was β‐sitosterol (83.5–89%), followed by stigmasterol (about 3%). However, in Quercus suber L., acorn oil was found to consist to 10.2% of campesterol. The amount of cholesterol was low (0.27% for the Quercus rotundifolia L. oil extracted by supercritical fluid extraction, and 0.18% for the oil extracted by n‐hexane). The Quercus suber L. acorn oil presented 0.1% of cholesterol. The total amount of tocopherols in Quercus rotundifolia L. acorn oils was almost the same when the oil was extracted by n‐hexane (973 mg/kg oil) or by supercritical CO2 (1006 mg/kg oil). The Quercus suber L. acorn oil presented a high value of total tocopherols (1486 mg/kg oil). The supercritical CO2 did not extract the phospholipids. The amount of phospholipids was very similar for both species of oak acorn oils extracted by n‐hexane. Oxidative stability was also studied, by using the peroxide value and the Rancimat method, revealing that all the oils were significantly protected against oxidation. The influence of storage, under several conditions, on the oxidative stability was also studied. The Quercus rotundifolia L. oil extracted by n‐hexane was better protected against oxidation after a few days of storage at 60 °C.  相似文献   

14.
To better understand the effect of predicted elevated levels of carbon dioxide (CO2) on an invasive weed Mikania micrantha, we constructed a suppressive subtractive hybridization (SSH) library from the leaves of M. micrantha exposed to CO2 at 350 and 750 ppm for 6 d, and isolated a novel gene named β-caryophyllene synthase. β-Caryophyllene synthase catalyses the conversion of farnesyl diphosphate to β-caryophyllene, a volatile sesquiterpene with allelopathic potential. Real-time PCR analysis revealed that gene expression of β-caryophyllene synthase in M. micrantha leaves was strongly induced in response to elevated CO2. Gas chromatography-mass spectrometry (GC-MS) and gas chromatography (GC) analyses showed that emission levels of β-caryophyllene from leaves of M. micrantha increased when exposed to 750 ppm CO2. Bioassays showed that phytotoxicity of β-caryophyllene against Raphanus sativus, Brassica campestris, Lactuca sativa, and M. micrantha was dose-dependent and varied with the receptor plants and concentrations of CO2. β-Caryophyllene displayed higher phytotoxic effects at 750 ppm than those at 350 ppm CO2, especially on R. sativus. These results suggest that elevated atmospheric CO2 levels may enhance biosynthesis and phytotoxicity of allelochemicals in M. micrantha, one of the worst invasive weeds in the world, which in turn might enhance its potential allelopathic effect on neighboring native plants if released in bioactive concentrations. Further investigations are required to determine the adaptive responses of both invasive and native plants to a gradual increase of atmospheric CO2 to 750 ppm predicted over a 100 year period.  相似文献   

15.
The stability of protein and phenolic measures in excised foliage from two oak species was measured under conditions that simulated the handling and treatment of foliage during insect rearing trials. Excised foliage kept hydrated under refrigeration or insect-rearing conditions maintained stable levels of protein content, proanthocyanidins, gallotannins, total phenolics, and protein-binding capacity for up to 48 hr following field sampling. Measures of protein content, total phenolics, protein-binding capacity, and proanthocyanidins were significantly greater 48–72 hr after field sampling, followed by declines to near field levels within 120 hr.  相似文献   

16.
Perennial plants are thought to respond to partial or complete defoliation by producing new foliage that is less susceptible to herbivores because of induction of allelochemicals. Here, I tested this hypothesis by manually removing primary foliage from branches ofQuercus emoryi (Fagaceae) at two different times in the season and monitoring changes in protein and tannin levels and the amount of herbivory relative to control branches. New, secondary leaves had 2.5 × greater hydrolyzable tannin content than mature foliage of control branches. Condensed tannins, which constitute a relatively low fraction of leaf mass, were lower, while protein content was temporarily greater, in new secondary leaves relative to mature leaves. Despite large increases in hydrolyzable tannins, herbivory levels were greater on refoliated branches than on control branches. New foliage is susceptible to herbivory regardless of when it is produced in the season, possibly because lower toughness and higher water content override any induced or developmentally related changes in allelochemistry. My results do not support the hypothesis that postherbivore changes in phytochemistry protect perennial plants from future herbivory, at least within a growing season.  相似文献   

17.
Plant secondary metabolites (PSMs) mediate a wide range of ecological interactions. Investigating the effect of environment on PSM production is important for our understanding of how plants will adapt to large scale environmental change, and the extended effects on communities and ecosystems. We explored the production of PSMs under elevated atmospheric carbon dioxide ([CO2]) in the species rich, ecologically and commercially important genus Eucalyptus. Seedlings from multiple Eucalyptus globulus and E. pauciflora populations were grown in common glasshouse gardens under elevated or ambient [CO2]. Variation in primary and secondary chemistry was determined as a function of genotype and treatment. There were clear population differences in PSM expression in each species. Elevated [CO2] did not affect concentrations of individual PSMs, total phenolics, condensed tannins or the total oil yield, and there was no population by [CO2] treatment interaction for any traits. Multivariate analysis revealed similar results with significant variation in concentrations of E. pauciflora oil components between populations. A [CO2] treatment effect was detected within populations but no interactions were found between elevated [CO2] and population. These eucalypt seedlings appear to be largely unresponsive to elevated [CO2], indicating stronger genetic than environmental (elevated [CO2]) control of expression of PSMs.  相似文献   

18.
Cynipid gall-wasp communities correlate with oak chemistry   总被引:1,自引:0,他引:1  
Host-plant association data, gathered from field surveys conducted throughout Florida and from the literature, were used to identify the specificity of cynipid gall inducers to one or more of six Quercus species that occur at Archbold Biological Station, Lake Placid, Florida, USA, including the red oaks Q. laevis, Q. myrtifolia, and Q. inopina, and the white oaks Q. chapmanii, Q. geminata, and Q. minima. Quercus myrtifolia had the highest cynipid richness and diversity (37 cynipid species, Shannon H = 3.61, Simpson's D = 0.97), followed by Q. chapmanii, Q. laevis, Q. inopina, Q. geminata, and finally Q. minima (10 species, H = 2.30, D = 0.90). All cynipid species showed strong fidelity to a particular host plant or a restricted set of host plants. An ordination of gall-wasp host associations indicated that the cynipid communities of each oak species were distinct and specific to a given oak species. Leaf samples taken from each oak species were analyzed for condensed and hydrolyzable tannins, total phenolics, lignin, cellulose and hemicellulose, nitrogen, and carbon. All of these chemical traits, with the exception of carbon, differed by oak species, and the differences were strongly correlated with the axes of the cynipid--species ordination. These results suggest that gall-wasp occurrence is influenced by oak chemistry and imply that experimental studies of cynipid gall inducers that examine host-plant chemistry and female oviposition choice and larval performance will yield useful insights.  相似文献   

19.
This study explored the effect of resource availability on plant phytochemical composition within the framework of carbon–nutrient balance (CNB) theory. We grew quaking aspen (Populus tremuloides) under two levels of light and three levels of nutrient availability and measured photosynthesis, productivity, and foliar chemistry [water, total nonstructural carbohydrates (TNC), condensed tannins, and phenolic glycosides]. Gypsy moths (Lymantria dispar) and forest tent caterpillars (Malacosoma disstria) were reared on foliage from each of the treatments to determine effects on insect performance. Photosynthetic rates increased under high light, but were not influenced by nutrient availability. Tree growth increased in response to both the direct and interactive effects of light and nutrient availability. Increasing light reduced foliar nitrogen, while increasing nutrient availability increased foliar nitrogen. TNC levels were elevated under high light conditions, but were not influenced by nutrient availability. Starch and condensed tannins responded to changes in resource availability in a manner consistent with CNB theory; levels were highest under conditions where tree growth was limited more than photosynthesis (i.e., high light–low nutrient availability). Concentrations of phenolic glycosides, however, were only moderately influenced by resource availability. In general, insect performance varied relatively little among treatments. Both species performed most poorly on the high light–low nutrient availability treatment. Because phenolic glycosides are the primary factor determining aspen quality for these insects, and because levels of these compounds were minimally affected by the treatments, the limited response of the insects was not surprising. Thus, the ability of CNB theory to accurately predict allocation to defense compounds depends on the response of specific allelochemicals to changes in resource availability. Moreover, whether allelochemicals serve to defend the plant depends on the response of insects to specific allelochemicals. Finally, in contrast to predictions of CNB theory, we found substantial allocation to storage and defense compounds under conditions in which growth was carbon-limited (e.g., low light), suggesting a cost to defense in terms of reduced growth.  相似文献   

20.
A series of V2O5-TiO2 aerogel catalysts were prepared by the sol-gel method with subsequent supercritical drying with CO2. The main variables in the sol-gel method were the amounts of V2O5 and when the vanadium precursor was introduced. V2O5-TiO2 xerogel and V2O5/TiO2 (P-25) were also prepared for comparison. The V2O5-TiO2 aerogel catalysts showed much higher surface areas and total pore volumes than V2O5-TiO2 xerogel and impregnated V2O5/TiO2 (P-25) catalysts. The catalysts were characterized by N2 physisorption, X-ray diffraction (XRD), FT-Raman spectroscopy, temperature-programmed reduction with H2 (H2-TPR), and temperature-programmed desorption of ammonia (NH3-TPD). The selective catalytic reduction of NOx with ammonia in the presence of excess O2 was studied over these catalysts. Among various V2O5-TiO2 catalysts, V2O5 supported on aerogel TiO2 showed a wide temperature window exhibiting high NOx conversions. This superior catalytic activity is closely related to the large amounts of strong acidic sites as well as the surface vanadium species with characteristics such as easy reducibility and monomeric and polymeric vanadia surface species. This work was presented at the 7 th Korea-China Workshop on Clean Energy Technology held at Taiyuan, Shanxi, China, June 26–28, 2008.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号