首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
通过分析剪力墙结构刚度和地震作用之间的关系,提出了在某一设防烈度下地震区剪力墙结构的刚度优化模型,利用结构优化设计之一--一维搜索法对剪力墙结构进行优化设计,以地震作用最小为目标,以抗侧刚度为变量,以结构水平位移、层间位移角、强度、轴压比、构件几何尺寸等位约束条件,用MATLAB语言编制了在水平荷载作用下的计算程序,通过实例证明该方法是有效的。  相似文献   

2.
对常见的剪切刚度、楼层剪力与层间位移比、剪弯刚度三种结构抗侧刚度计算方法展开分析,探究各方法的适用性及优缺点,结果表明,剪切刚度为剪弯刚度简化计算方法,其可应用于结构方案阶段,当1≤h/b≤4时,计算误差较大;按楼层剪力与层间位移的比值计算侧向刚度时,由于存在无害位移影响,其计算结果往往偏小;采用剪弯刚度可以较为精确合理计算结构抗侧刚度,其计算代价也较高。  相似文献   

3.
不同尺寸的墙、柱截面具有不同的相对侧移刚度,根据楼层刚心与质心的偏离程度,替换不同相对侧移刚度的墙、柱截面,使楼层的刚心与质心尽量重合,从而获得良好的结构抗扭性能。  相似文献   

4.
生态复合墙体作为生态复合墙结构的主要受力构件,它是由生态复合墙板与隐形外框组成的墙肢或墙段。鉴于开洞对墙体抗侧刚度影响较为显著,通过对1/2模型开洞生态复合墙体和标准不开洞生态复合墙体进行试验研究,对比分析二者的破坏模式及抗震性能。通过验证后的数值模型建立墙体扩展试验,分析其影响因素对开洞生态复合墙体抗侧刚度的影响程度并建立开洞生态复合墙体抗侧刚度计算公式,对比试验、数值与理论计算结果,验证计算公式正确性。理论计算结果与试验结果对比可得出:开洞生态复合墙体抗侧刚度计算公式具有一定的精度,能满足实际工程的要求。  相似文献   

5.
通过对上千个框架的框架柱水平抗侧移刚度的分析,考虑实际框架各层各跨梁柱的实际变形对梁柱线刚比影响系数α及框架水平抗侧移刚度D值的影响,提出一系列例于计算机编程使用且较为精确的梁柱线刚比α的计算公式,修正了传统的D值法。  相似文献   

6.
底层框架抗震墙砖房第二层与底层侧移刚度比控制分析   总被引:2,自引:0,他引:2  
本文在有关研究成果的基础上,结合工程实际,通过分析研究,提出了底层框 架抗震墙砖房第二层与底层侧移刚度的控制指标和计算方法。利用该成果开发的计算程序, 能迅速完成底层框架抗震墙砖房第二层与底层侧移刚度的控制分析,可供设计单位和抗震主 管部门参考。  相似文献   

7.
介绍了一种新型耗能钢框架结构支撑--限制屈曲支撑(BRBs),定义了BRBs与钢结构框架的名义抗侧刚度比R,建立了几何计算模型,并采用ANSYS有限元软件对其进行振型分解反应谱法和时程分析计算.然后,对计算结果进行分析,得出了名义抗侧刚度比R的变化对结构抗震性能的影响规律,总结出了多高层建筑刚度比的最佳取值范围.本文结论可为限制屈曲支撑结构设计提供参考依据.  相似文献   

8.
本文首先介绍主动变刚度和主动变阻尼控制系统的研究进展情况,进而介绍基于这两种控制系统的有机结合的一种崭新的半主动控制技术一主动变刚度阻尼控制(AVSD),指出了AVSD系统几个急需解决的问题,并展望这一控制技术的应用前复  相似文献   

9.
《工业建筑》2017,(1):158-162
钢板剪力墙内嵌钢板的主要作用是抵抗水平荷载,其抗侧刚度的确定对分析整个结构体系在水平荷载作用下的结构反应有很重要的作用。对钢板剪力墙的弹性抗侧刚度进行了研究,首先在分析内嵌钢板与边缘框架之间相互作用的基础上,推导了钢板剪力墙的抗侧刚度理论表达式。其次,采用ABAQUS软件建立了多个算例的有限元模型;最后,将理论结果与有限元分析结果进行了对比研究,结果表明所推导的抗侧刚度的理论公式是精确可靠的。  相似文献   

10.
高支撑体系主要应用在大跨度、大空间结构中,由于其抗侧刚度不足,易发生整体失稳.为了解决高支撑体系失稳问题,应用钢结构稳定理论,对其整体稳定进行研究.首先研究高支撑体系抗侧刚度对其稳定性的影响,其次对不同抗侧刚度的高支撑体系进行有限元分析.结果表明,高支撑体系的抗侧刚度决定其整体稳定性.因此在工程中设计高支撑体系时,必须根据建筑结构的特点,选择合理的侧向支撑形式,提高其抗侧刚度.  相似文献   

11.
GB50011-2001《建筑抗震设计规范》提出的"层间剪力位移比"的计算方法对侧向刚度规则性的判断存在局限性,在一些特殊情况下会得出不正确的结论,为了解决侧向刚度规则性判断的问题,提出了"层间剪力位移角比"的侧向刚度计算方法,结合算例可以看出,对于以弯曲变形为主的结构,此方法结构概念明确,得出的结论符合工程经验,是对规范方法的很好的补充。  相似文献   

12.
This paper presents the optimal lateral stiffness design of composite steel and concrete tall frameworks subject to overall and interstorey drift constraints as well as member sizing limits using an efficient numerical approach developed based on the Optimality Criteria (OC) method. Taking into account the composite interaction between the structural steel and concrete materials, the stiffness-based optimal design problem is first formulated according to the European Code 4 (EC4). The necessary optimality criteria are then derived for the design followed by the construction of an iterative scheme to satisfy these optimality conditions while indirectly optimizing the design problem with multiple constraints. The recursive OC process is then carried out with the initial member sizes obtained from a closed-form solution developed for the similar problem with a single drift constraint. The effectiveness and practicality of the developed optimization approach is further illustrated through a series of framework examples.  相似文献   

13.
This paper presents an optimal sizing technique for the lateral stiffness design of tall steel and concrete buildings. The minimum structure cost design problem subject to lateral drift constraints is first mathematically formulated and then solved by a rigorously derived Optimality Criteria (OC) method. The emphasis is particularly placed on the practical applicability of the optimization technique in engineering practice. Once the structural form of the lateral load resisting system of a building is defined, the optimal steel and concrete element sizes are then sought while satisfying all serviceability lateral stiffness and practical sizing requirements. The effectiveness and practicality of the optimization technique is illustrated through an actual application to the preliminary design of an 88‐storey building in Hong Kong. When complete, the building will be 420 m tall and will become the tallest building in Hong Kong. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

14.
为保障建筑物最低抗震安全性的要求,地震作用下结构系统受剪承载力不应过小,GB 50011—2010《建筑抗震设计规范》中提出了剪重比指标。由于地震影响系数在长周期段下降较快,超高层结构在地震作用下的基底剪力及楼层剪力偏低,导致其剪重比指标往往无法满足规范要求。通过对剪重比约束下构件尺寸的敏感性分析,研究以最小成本满足剪重比指标的优化设计方法。依据虚功原理和等增量分析方法推导了敏感性系数公式,并以简单框架结构为例验证了两种敏感性分析方法的有效性。并将上述敏感性分析方法用于建筑高度为468 m的某超高层建筑,结果表明,以敏感性为指引对剪重比控制的超高层结构进行优化设计,共节约材料成本1141.99万元,具有较好的经济效益。  相似文献   

15.
The lateral load resisting system of a multi‐storey building is considered to be an assembly of structural components, such as the structural frame, shear walls, concrete cores, etc. However, in reality, some so‐called ‘non‐structural components (NSCs)’ also play important roles in adding stiffness to the building. To evaluate the contributions from those NSCs and to quantify some of their contributions to the stiffness of the structure under service level loads, this paper reports on the analysis of a lateral load resisting system with different components so that the stiffness contribution from each individual component may be evaluated. Results from finite element analyses are verified by other theoretical calculations. Discussions and conclusions on the performance of both single components and the building system are also provided. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

16.
A building is a complex assemblage of both structural and non‐structural components (NSC). Although many NSC, such as partition walls, external walls, parapet walls, stairwells, elevator shafts and so forth, are connected directly to the structural system, their behaviour and stiffening effects under lateral loading have normally been ignored by design engineers, despite significant advances in computer technology and the availability of modern computational resources. The performance of structures can be greatly improved by the increase in strength arising from the NSC; on the contrary, this increase in strength also accompanies an increase in the initial stiffness of the structure, which may consequently attract additional seismically induced lateral inertia forces. This paper is concerned with the estimation of the lateral stiffness contributed by the NSC to the total stiffness of three common forms of tall building structures constructed in Hong Kong. Both dynamic tests and numerical modelling of the buildings have been carried out for this purpose. Natural period estimates from dynamic tests and from analyses using calibrated finite element models were found to be in remarkable agreement. Significant stiffness contributions from NSC to the total lateral stiffness of tall buildings have been observed in the study. The extent of the contributions depends on the structural form and the type of components. Other contributions to the additional stiffness have also been analysed for comparison in the study. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

17.
张强 《中国建材科技》2017,26(3):141-141
伴随着我国居民生活质量的稳步提升,我国的工程建设单位加强了对于工程建设施工技术以及工艺的创新,并在实际的操作过程中加强了建筑结构形式的优化改造,确保建筑质量以及功能的提升。事实上,由于我国的山地地形较多,故而导致山地建筑日益增多。在这样的背景之下,需要工程设计单位以及人员在实际的作业过程中从地震动输入以及侧向刚度控制角度进行作业,促进其质量以及性能的稳步提高。  相似文献   

18.
This paper presents a procedure for the calculation of wind loads on a proposed 385 ft tall building located in strong wind and mixed strong wind and hurricane wind regions. The procedure for the computation of design wind loads uses mixed distribution and Monte Carlo simulation. The results of a probabilistic analysis of hurricane wind speeds are combined with the probability distribution of recorded extreme wind speeds (excluding hurricane data) at the site. A 50‐year sample of extreme wind speeds is created and the maximum 50‐year wind (from the hurricane and the recorded data) is noted. The simulation is repeated for a large number of samples (>10000) and the probability distribution of the 50‐year wind speed is computed for use in establishing the design wind speed Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

19.
This paper presents a quick method for estimating the lateral stiffness of building structures, including regular and irregular moment frames, braced frames as well as frames with shear walls, which can be used for preliminary analysis and especially final check purposes. The method can be utilized for the calculation of the building displacement at different levels under lateral loads, the contribution of various lateral resisting systems to carrying the lateral loads, and finally the natural frequencies of the system. The basic idea of the method is based on some facts about the lateral deformation and stiffness of building structures, which make it possible to consider an equivalent single‐bay single‐story frame module for every story of the real multi‐bay multi‐story frame. This leads to a 3‐diagonal or banded stiffness matrix in most cases. Even in the cases resulting in a full stiffness matrix the proposed method does not require solving a system of simultaneous equations for obtaining the lateral displacements. Several numerical examples show the higher efficiency and precision of the proposed method in comparison with the Kan method. The use of the main concepts of the proposed method for preliminary design purposes is also possible as a secondary application. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

20.
周永 《福建建材》2011,(6):93-94
C35级大体积混凝土一次浇筑,为避免基础混凝土产生有害结构裂缝,在原材料选用、施工配合比设计、混凝土施工工艺、内部温度监测与控制等方面采取了有效措施。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号