首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
The results of the optimization of the ammonia MBE technology of AlN/AlGaN/GaN/AlGaN heterostructures for high-power microwave field-effect transistors (FETs) are presented. The creation of technological systems of the EPN type for the deposition of group III nitrides by ammonia MBE, in combination with the development of optimum growth and postgrowth processes, make it possible to obtain AlN/AlGaN/GaN/AlGaN based heterostructures for high-power microwave FETs with the output static characteristics on the world best level. One of the main fields of application of the semiconductor heterostructures based on group III nitrides is the technology of high electron mobility transistors (HEMTs). Most investigations in this field have been devoted to the classical GaN/AlGaN structures with a single heterojunction. An alternative approach based on the use of double heterostructures with improved two-dimensional electron gas (2DEG) confinement offers a number of advantages, but such structures are usually characterized by a lower carrier mobility as compared to that in the single-junction structures. We succeeded in optimizing the double heterostructure parameters and growth conditions so as to obtain conducting channels with a 2DEG carrier mobility of 1450, 1350, and 1000 cm2/(V s) and a sheet electron density of 1.3 × 1013, 1.6 × 1013, and 2.0 × 1013 cm?2, respectively. Experimental HEMTs with 1-μm-long gates based on the obtained multilayer heterostructure with a doped upper barrier layer exhibit stable current-voltage characteristics with maximum saturation current densities of about 1 A/mm and a transconductance of up to 180 mS/mm.  相似文献   

2.
We present the realization of high electron mobility transistors (HEMTs) based on AlGaN/GaN heterostructures, which were grown on silicon substrates using an ultrathin SiC transition layer. The growth of AlGaN/GaN heterostructures on 3C-SiC(111)/Si(111) was performed using metalorganic chemical vapour deposition (MOCVD). The 3C-SiC(111) transition layer was realized by low pressure CVD and prevented Ga-induced meltback etching and Si-outdiffusion in the subsequent MOCVD growth. The two-dimensional electron gas (2DEG) formed at the AlGaN/GaN interface showed an electron sheet density of 1.5 × 1013 cm− 3 and a mobility of 870 cm2/Vs. The HEMTs DC and RF characteristics were analysed and showed a peak cut-off frequency as high as 29 GHz for a 250 nm gate length.  相似文献   

3.
The effects of Schottky gate on behavior of two-dimensional electron gas (2DEG) density and two-dimensional electron mobility (2DEM) in AlGaN/GaN heterostructures with different Al mole fraction in AlGaN barrier and its different thickness have been studied. The sheet carrier concentration, NS, was determined self-consistently from the coupled Schrödinger and Poisson equations, by assuming a real model for heterostructures and by using Numerov's method.The most dominant scattering mechanisms have been considered to calculate 2DEM with using more accurate numerical calculation and considering all intra-subband, inter-sub-band scattering.The results of our analysis clearly indicate that increasing the gate voltage leads to an increase in the 2DEG density and 2DEM. Also it shows that increasing the gate voltage for higher positive voltage; decrease the 2DE Mobility where the 2DEG density is saturated. These behaviors depend on barrier thickness and Al mole fraction.  相似文献   

4.
Li Y  Xiang J  Qian F  Gradecak S  Wu Y  Yan H  Blom DA  Lieber CM 《Nano letters》2006,6(7):1468-1473
We report the rational synthesis of dopant-free GaN/AlN/AlGaN radial nanowire heterostructures and their implementation as high electron mobility transistors (HEMTs). The radial nanowire heterostructures were prepared by sequential shell growth immediately following nanowire elongation using metal-organic chemical vapor deposition (MOCVD). Transmission electron microscopy (TEM) studies reveal that the GaN/AlN/AlGaN radial nanowire heterostructures are dislocation-free single crystals. In addition, the thicknesses and compositions of the individual AlN and AlGaN shells were unambiguously identified using cross-sectional high-angle annular darkfield scanning transmission electron microscopy (HAADF-STEM). Transport measurements carried out on GaN/AlN/AlGaN and GaN nanowires prepared using similar conditions demonstrate the existence of electron gas in the undoped GaN/AlN/AlGaN nanowire heterostructures and also yield an intrinsic electron mobility of 3100 cm(2)/Vs and 21,000 cm(2)/Vs at room temperature and 5 K, respectively, for the heterostructure. Field-effect transistors fabricated with ZrO(2) dielectrics and metal top gates showed excellent gate coupling with near ideal subthreshold slopes of 68 mV/dec, an on/off current ratio of 10(7), and scaled on-current and transconductance values of 500 mA/mm and 420 mS/mm. The ability to control synthetically the electronic properties of nanowires using band structure design in III-nitride radial nanowire heterostructures opens up new opportunities for nanoelectronics and provides a new platform to study the physics of low-dimensional electron gases.  相似文献   

5.
AlGaN/GaN heterostructures with a two dimensional electron gas (2DEG) at the interface have been investigated by contactless electroreflectance (CER) and photoreflectance (PR) spectroscopies. It has been shown that the 2DEG effectively screens the GaN layer and hence no signal related to a bandgap transition in the GaN layer is observed in CER spectra whereas the CER signal related to a bandgap transition in the AlGaN layer is very strong. The screening phenomenon is unimportant for PR spectroscopy due to different mechanism of the electromodulation. As a result both GaN and AlGaN related transitions are clearly observed in PR spectra. It has been proposed that the screening phenomena observed in CER can find application in contactless detection of the 2DEG in AlGaN/GaN heterostructures.  相似文献   

6.
Flexible gallium nitride (GaN) thin films can enable future strainable and conformal devices for transmission of radio‐frequency (RF) signals over large distances for more efficient wireless communication. For the first time, strainable high‐frequency RF GaN devices are demonstrated, whose exceptional performance is enabled by epitaxial growth on 2D boron nitride for chemical‐free transfer to a soft, flexible substrate. The AlGaN/GaN heterostructures transferred to flexible substrates are uniaxially strained up to 0.85% and reveal near state‐of‐the‐art values for electrical performance, with electron mobility exceeding 2000 cm2 V?1 s?1 and sheet carrier density above 1.07 × 1013 cm?2. The influence of strain on the RF performance of flexible GaN high‐electron‐mobility transistor (HEMT) devices is evaluated, demonstrating cutoff frequencies and maximum oscillation frequencies greater than 42 and 74 GHz, respectively, at up to 0.43% strain, representing a significant advancement toward conformal, highly integrated electronic materials for RF applications.  相似文献   

7.
In this work, we introduce a new modified approach to the formation of interdigital transducer (IDT) structures on an AlGaN/GaN heterostructure. The approach is based on a shallow recess-gate plasma etching of the AlGaN barrier layer in combination with “in-situ” SF6 surface plasma treatment applied selectively under the Schottky gate fingers of IDTs. It enables one to modify the two-dimensional electron gas (2DEG) density and the surface field distribution in the region of the IDTs, as is needed for the excitation of a surface acoustic wave (SAW). The measured transfer characteristics of the plasma-treated SAW structures revealed the excitation of SAW at zero bias voltage due to fully depleted 2DEG in the region of the IDTs. High external bias voltages are not necessary for SAW excitation. SIMS depth distribution profiles of F atoms were measured to discuss the impact of SF6 plasma treatment on the performance of the AlGaN/GaN-based IDTs.  相似文献   

8.
It has been shown that the interaction of 1 MeV protons at doses of (0.5–2) × 1014 cm–2 with transistor structures having a 2D AlGaN/GaN channel (AlGaN/GaN HEMTs) is accompanied not only by the generation of point defects, but also by the formation of local regions with a disordered nanomaterial. The degree of disorder of the nanomaterial was evaluated by multifractal analysis methods. An increase in the degree of disorder of the nanomaterial, manifested the most clearly at a proton dose of 2 × 1014 cm–2, leads to several-fold changes in the mobility and electron density in the 2D channel of HEMT structures. In this case, the transistors show a decrease in the source–drain current and an order-of-magnitude increase in the gate leakage current. In HEMT structures having an enhanced disorder of the nanomaterial prior to exposure to protons, proton irradiation results in suppression of the 2D conductivity in the channel and failure of the transistors, even at a dose of 1 × 1014 cm–2.  相似文献   

9.
Interfacial reactions between Ti/Al/Ni/Au metallization and GaN(cap)/AlGaN/GaN heterostructures at various annealing temperatures ranging from 715 to 865 °C were studied. Electrical current-voltage (I?CV) characteristics, van der Pauw Hall mobility measurements and surface topography measurement with atomic force microscopy (AFM) were performed. The ohmic metallizations were annealed at various temperatures in a rapid thermal annealing system and the annealing time of 60 seconds was kept for all samples. To study the influence of the parameters of annealing process on the properties of the 2 dimensional electron gas (2DEG) the van der Pauw Hall mobility measurement was used. Interfacial reactions between the contact metals and heterostructures were analyzed through depth profiles of secondary ion mass spectroscopy. It was observed that transition from nonlinear to linear I-V behavior occurred after the annealing at 805 °C. For the studied samples, the most promising results were obtained for the annealing temperature of 805 °C. This temperatue ensured not only low contact resistance but also made possible to preserve the 2DEG.  相似文献   

10.
Resistivity and Hall effect measurements on nominally undoped Al0.25Ga0.75N/GaN/AlN heterostructures grown on sapphire substrates prepared by metal organic chemical vapor deposition have been carried out as a function of temperature (20-300 K) and magnetic field (0-1.4 T). Variable magnetic field Hall data have been analyzed using the improved quantitative mobility spectrum analysis technique. The mobility and density of the two-dimensional electron gas at the AlGaN/GaN interface and the two-dimensional hole gas at the GaN/AlN interface are separated by quantitative mobility spectrum analysis. The analysis shows that two-channel conduction is present in nominally undoped Al0.25Ga0.75N/GaN/AlN heterostructures grown on sapphire substrate.  相似文献   

11.
Technical Physics Letters - It is shown that intentionally undoped high-resistance GaN buffer layers in AlGaN/GaN heterostructures with high electron mobility for transistors can be formed by...  相似文献   

12.
This work reports on the latest results of etching of different Al x Ga1?x N/GaN heterostructures in relation to percentage composition of aluminum. The etching processes were carried out in a reactive ion etching (RIE) system using the mixture of BCl3/Cl2/Ar. The topography of the heterostructures surfaces and the slope were controlled using atomic force microsopy (AFM) technique. The photoluminescence spectra were used to determine the surface damage and to calculate the Al content in AlGaN/GaN heterostructures commonly used for high electron mobility transistors (HEMTs) fabrication.  相似文献   

13.
Preliminary results on the transfer of the ammonia MBE technology of nitride transistor heterostructures to AlN/SiC substrates. The main device properties achieved previously with AlN/AlGaN/GaN/AlGaN multilayer heterostructures on sapphire are almost completely reproduced on the new base despite increased roughness of the initial AlN/SiC substrates as compared to sapphire. The saturation current of prototype field-effect transistors based on the nitride heterostructures grown on AlN/SiC substrates are comparable with the analogous parameter of devices grown on sapphire and exhibits no decrease related to thermal scattering at high bias voltages.  相似文献   

14.
The first experimental results demonstrating that the carrier mobility in the AlGaN/GaN 2D channel of transistor structures (AlGaN/GaN-HEMT) is correlated with the manner in which the nanomaterial is organized and also with the operation reliability of transistor parameters are presented. It is shown that improving the nature of organization of the nanomaterials in AlGaN/GaN-HEMT structures, evaluated by the multifractal parameter characterizing the extent to which a nanomaterial is disordered (local symmetry breaking) is accompanied by a significant, several-fold increase in the electron mobility in the 2D channel and in the reliability of parameters of transistors fabricated from these structures.  相似文献   

15.
Performance of AlGaN/GaN heterostructure field-effect transistors (HFETs) with recessed gate was investigated and compared with non-recessed counterparts. Optimal dry etch conditions by plasma assisted Ar sputtering were found for ∼6 nm gate recess of a 20 nm thick AlGaN barrier layer. A decrease of the residual strain after the gate recessing (from −0.9 GPa to −0.68 GPa) was evaluated from the photoluminescence measurement. The saturation drain current at the gate voltage VG = 1 V decreased from 1.05 A/mm to 0.85 A/mm after the recessing. The gate voltage for a maximal transconductance (240−250 mS/mm) has shifted from −3 V for non-recessed HFETs to −0.2 V for recessed counterparts. Similarly, the threshold voltage increased after the gate recessing. A decrease of the sheet charge density from 1 × 1013 cm−2 to 4 × 1012 cm−2 at VG = 0 V has been evaluated from the capacitance measurements. The RF measurements yielded a slight increase of the cut-off frequencies after the gate recessing. All these indicate that the gate recessing is a useful tool to optimize the AlGaN/GaN HFET performance for high-frequency applications as well as for the preparation of normally-off devices.  相似文献   

16.
A key breakthrough in inorganic modern electronics is the energy‐band engineering that plays important role to improve device performance or develop novel functional devices. A typical application is high electron mobility transistors (HEMTs), which utilizes 2D electron gas (2DEG) as transport channel and exhibits very high electron mobility over traditional field‐effect transistors (FETs). Recently, organic electronics have made very rapid progress and the band transport model is demonstrated to be more suitable for explaining carrier behavior in high‐mobility crystalline organic materials. Therefore, there emerges a chance for applying energy‐band engineering in organic semiconductors to tailor their optoelectronic properties. Here, the idea of energy‐band engineering is introduced and a novel device configuration is constructed, i.e., using quantum well structures as active layers in organic FETs, to realize organic 2DEG. Under the control of gate voltage, electron carriers are accumulated and confined at quantized energy levels, and show efficient 2D transport. The electron mobility is up to 10 cm2 V?1 s?1, and the operation mechanisms of organic HEMTs are also argued. Our results demonstrate the validity of tailoring optoelectronic properties of organic semiconductors by energy‐band engineering, offering a promising way for the step forward of organic electronics.  相似文献   

17.
We demonstrate the excellent performance of a 140 W AlGaN/GaN HEMT in the C-band, which is passivated by a Cat-CVD SiN film. The interface trap density of the AlGaN surface passivated by Cat-CVD film after NH3 treatment is 3 × 1012 cm− 2, which is the smallest of investigated deposition techniques. The lowest interface trap density achieved by the Cat-CVD technique makes it possible to operate the AlGaN/GaN HEMT in the C-band. We clarify that the Cat-CVD technique is necessary for developing future amplifiers.  相似文献   

18.
Specific features of how nonalloyed ohmic contacts to the 2D conducting channel of high-electron-mobility transistors based on AlGaN/(AlN)/GaN heterostructures are fabricated via deposition of heavily doped n +-GaN through a SiO2 mask by ammonia molecular-beam epitaxy have been studied. The technique developed makes it possible to obtain specific resistances of contacts to the 2D gas as low as 0.11 Ω mm on various types of Ga-face nitride heterostructures, which are several times lower than the resistance of conventional alloyed ohmic contacts.  相似文献   

19.
We have developed a virtual GaN substrate on sapphire based on a two-step growth method. By optimizing the growth scheme for the virtual substrate we have improved crystal quality and reduced interface roughness. Our Al0.22Ga0.78N/GaN HEMT structure grown on the optimized semi-insulating GaN virtual substrate, exhibits Hall mobilities as high as 1720 and 7350 cm2/Vs and sheet carrier concentrations of 8.4 × 1012 and 10.0 × 1012 cm− 2 at 300 K and 20 K, respectively. The presence of good AlGaN/GaN interface quality and surface morphology is also substantiated by X-Ray reflectivity and Atomic Force Microscopy measurements. A simplified transport model is used to fit the experimental Hall mobility.  相似文献   

20.
Selective plasma treatment of an AlGaN/GaN heterostructure in the RF discharge of the electronegative SF6 gas was studied. Shallow recess-gate etching of AlGaN (∼5 nm) was performed in CCl4 plasma through a photoresist mask. Subsequently, recess-gate etching followed in situ by SF6 plasma. The plasma treatment provides the following advantages in the technology of AlGaN/GaN high-electron mobility transistors (HEMT): It (1) simplifies their technology; (2) ensures sufficient selectivity; and (3) enables the technologist to set the threshold voltage of the HEMTs controllably. At the same time, the treatment can (1) provide the AlGaN/GaN heterostructure with surface passivation; (2) modify the 2DEG in any area of a HEMT channel; and (3) make it possible to convert a HEMT operation from depletion mode to enhancement mode. The treatment also improved significantly the DC and RF parameters of HEMTs studied.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号